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Abstract

3D city modeling is a thriving area of research, as high quality models of real-
world cities are in ever-rising demand. These models are used not only among
architects and urban planners, but also find their application in navigation,
virtual tourism, and entertainment industry. Manual modeling of individual
buildings usually provides good results, but the process is very time consuming
and expensive. Current automatically-built models using Structure from Motion,
followed by simple plane fitting and texturing are a good starting point, but
provide inadequate 3D visual perception. No matter the capturing technology,
the resulting models are deficient, particularly when dealing with thin objects,
fragmented volumes and reflective surfaces. Furthermore, conventional bottom-
up models lack any semantic knowledge about the scene. Yet, adding a good
understanding of what it is that needs to be modeled is a strong cue, not only
to improve the visual and 3D quality of the model, but also to substantially
widen its usage.

Conversely, procedural modeling provides an effective way to create detailed
and realistic 3D building models that do come with all the semantic labels
required. This elegant yet powerful framework represents models such as
buildings through instantiations of a series of parameterized rules, forming
a grammar. The resulting procedural models are compact, rich in terms of
semantics, and allow for more aesthetic rendering than would be possible from
pure 3D capturing.

Thus far, procedural modeling has largely been used for synthesizing virtual
buildings. In this thesis, we investigate how procedural models can be used
in the context of urban reconstruction. Our ultimate goal is to automatically
create procedural models of structures as-built, a process referred to as inverse
procedural modeling. The main challenge in this process is to determine the
appropriate rules of the procedural grammar and their parameters, which
typically results in a large search space.
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iv ABSTRACT

In the first part of the thesis we assume the grammar rules are already known,
while parameters are allowed to vary. We develop a system for 3D building
reconstruction where the grammar leads the modeling process and receives
structural information from object detectors. A drawback of this approach is
that the grammar needs to be selected beforehand. Therefore, we develop an
algorithm for automatic selection of the appropriate style grammar based on
the visual recognition of the architectural style of the observed building.

Presently, the main drawback of procedural grammars is that expert
architectural knowledge is needed for their creation, which is a non-trivial
manual process. Moreover, the abundance of different architectural styles in the
world would require many such grammars to be designed. To tackle this problem,
in the second part of the thesis we simplify the prior knowledge necessary for
building reconstruction to a set of general and style-independent architectural
principles. We use these weaker priors in a bottom-up approach, by producing
high-quality semantic labeling of perspective images and Structure-from-Motion
point clouds. This labeling is afterwards transformed into building-specific
procedural models, allowing realistic rendering.

In the third part of the thesis, we address the problem of procedural grammar
scarcity by proposing to learn the grammars from data. First, we show that
probabilistic grammars can be learned from annotated facade imagery. The
inferred grammars are shown to be comparable to expert-written grammars on
the task of facade reconstruction. Second, we eliminate the need for manual
image annotation by replacing it with the previously proposed automatic facade
labeling approach. Finally, the learned representations are shown to be useful
for virtual facade synthesis, facade comparison and retrieval.

The proposed models have been evaluated on several datasets of urban scenes,
advancing the state of the art in terms of accuracy and speed. More importantly,
it is the conclusion of this thesis that the problem of inverse procedural modeling
of buildings could be solved with grammar learning from labeled and noisy data,
obviating the need for a human in the loop, and opening up novel directions for
future research.



Beknopte samenvatting

3D stadsmodellering is een bloeiend gebied van onderzoek, omdat er een steeds
groeiende vraag is naar stadsmodellen van hoge kwaliteit. Deze modellen
worden niet alleen gebruikt bij architecten en stedenbouwkundigen, maar
vinden ook hun toepassing in navigatie, virtueel toerisme en de entertainment
industrie. Handmatige modellering van individuele gebouwen levert meestal
goede resultaten op, maar het proces is zeer tijdrovend en duur. Huidige
modellen, automatisch gebouwd met behulp van structuur-uit-beweging, gevolgd
door eenvoudige plane fitting en textuurbekleding zijn een goed uitgangspunt,
maar bieden onvoldoende visuele kwaliteit. Ongeacht de manier van acquisitie
hebben de resulterende modellen een tekort, vooral wanneer het gaat om dunne
voorwerpen, gefragmenteerde volumes en reflecterende oppervlakken. Bovendien
missen conventionele bottom-up modellen semantische kennis over de scene.
Maar een goed begrip van wat moet gemodelleerd worden is een sterke hulp,
niet alleen om de visuele en 3D kwaliteit van het model te verbeteren, maar
ook om het toepassingsgebied aanzienlijk te vergroten.

Procedurele modellering biedt een effectieve manier om gedetailleerde en
realistische 3D-modellen van gebouwen te creëren die wel alle vereiste
semantische labels meekrijgen. Dit elegante maar krachtige framework
representeert modellen zoals gebouwen door de instantiatie van een reeks
geparametriseerde regels, die samen een grammatica vormen. De resulterende
procedurele modellen zijn compact, rijk in termen van semantiek, en zorgen
voor meer esthetische rendering dan mogelijk zou zijn door pure 3D vastlegging.

Tot dusver werd procedurele modellering grotendeels gebruikt voor het
synthetiseren van virtuele gebouwen. In dit proefschrift onderzoeken we
hoe procedurele modellen kunnen worden gebruikt in het kader van de
stadsreconstructie. Ons uiteindelijke doel is om procedurele modellen van
bestaande structuren automatisch te creëren, een proces dat bekend staat als
inverse procedurele modellering. De belangrijkste uitdaging in dit proces is het
bepalen van passende regels voor de procedurele grammatica en hun parameters,
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wat typisch resulteert in een grote zoekruimte.

In het eerste deel van het proefschrift nemen we aan dat de grammaticale
regels reeds bekend zijn, terwijl de parameters mogen variëren. We ontwikkelen
een systeem voor 3D reconstructie van gebouwen waar de grammatica het
modelleringsproces leidt en structurele informatie ontvangt van object detectoren.
Een nadeel van deze benadering is dat de grammatica vooraf moet worden
geselecteerd. Daarom ontwikkelen we een algoritme voor automatische selectie
van de juiste stijlgrammatica op basis van visuele herkenning van de bouwstijl
van het waargenomen gebouw.

Momenteel is het belangrijkste nadeel van procedurele grammatica dat
deskundige architecturale kennis vereist is om er een te creëren, wat een niet-
triviaal handmatig proces is. Bovendien zou de overvloed aan verschillende
architecturale stijlen in de wereld ervoor zorgen dat veel van dergelijke
grammatica’s moeten worden ontworpen. Om dit probleem aan te pakken
vereenvoudigen we in het tweede deel van het proefschrift de voorkennis die
nodig is voor gebouwsreconstructie tot een reeks algemene en stijl-onafhankelijke
architecturale principes. We gebruiken deze zwakkere voorkennis in een bottom-
up benadering, door het produceren van kwalitatief hoogwaardige semantische
labels van perspectiefbeelden en structuur-uit-beweging puntenwolken. Deze
labels worden daarna omgezet in gebouw-specifieke procedurele modellen,
waardoor realistische weergave mogelijk is.

In het derde deel van het proefschrift pakken we het probleem van de
schaarste van procedurele grammatica aan door de grammatica uit data te
leren. Eerst tonen we aan dat probabilistische grammatica’s kunnen worden
geleerd uit geannoteerde beelden van facades. We tonen dat de afgeleide
grammatica’s vergelijkbaar zijn met grammatica’s geschreven door experts voor
de taak van facade reconstructie. Ten tweede elimineren we de noodzaak voor
handmatige beeldannotatie door deze te vervangen met de eerder voorgestelde
automatische facade labeling aanpak. Tenslotte wordt aangetoond dat de
geleerde representaties nuttig zijn voor de synthese van virtuele facades, de
vergelijking van verschillende facades en het vinden van facades.

De voorgestelde modellen zijn geëvalueerd op verschillende datasets van
stedelijke scènes en bevorderen de state of the art op het gebied van
nauwkeurigheid en snelheid. Wat nog belangrijker is, het is de conclusie van
dit proefschrift dat het probleem van de inverse procedurele modellering van
gebouwen kan worden opgelost door het leren van grammatica uit gelabelde
en ruizige gegevens, wat de noodzaak van een menselijke ingreep wegneemt en
nieuwe richtingen voor toekomstig onderzoek openstelt.



Kratak sažetak

3D modeliranje gradova je vrlo aktivno polje istraživanja, budući da postoji sve
veća potražnja za visokokvalitetnim modelima postojećih gradova. Osim kod
arhitekata i dizajnera urbanih prostora, dotični modeli pronalaze svoju primjenu
i u navigaciji, virtualnom turizmu i industriji zabave. Ručno modeliranje
pojedinačnih građevina obično rezultira kvalitetnim modelima, ali zahtijeva
puno vremena i novca. Trenutni modeli generirani automatskim postupcima
poput “Strukture iz pokreta” (engl. Structure from Motion, SfM), nakon kojeg
slijedi određivanje ravninskih segmenata i teksturiranje su dobra početna točka,
no 3D percepcija takvih modela je nezadovoljavajuća. Koju god tehnologiju
za prikupljanje podataka koristili, stvoreni modeli su manjkavi, pogotovo kad
sadržavaju tanke predmete, rascjepkane volumene ili reflektirajuće površine.
Povrh toga, konvencionalni modeli oskudijevaju semantičkim znanjem. Međutim,
ukoliko je struktura objekta koji se modelira dobro poznata, moguće je ne samo
poboljšati vizualnu i 3D kvalitetu modela, već i znatno proširiti njegovu uporabu.

S druge strane, proceduralno modeliranje pruža učinkovit način za stvaranje
detaljnih i realističnih 3D modela građevina, koje dolaze sa svim potrebnim
semantičkim oznakama. Ovaj elegantni no snažni programski okvir predstavlja
modele poput građevina u algoritamskom obliku. Svaki model je opisan
gramatikom, koja sadrži skup parametriziranih produkcija. Počevši od
jednostavnog modela, sekvencijalnom primjenom produkcija model se razrađuje i
obogaćuje dodatnim detaljima. Rezultirajući proceduralni modeli su kompaktni,
semantički bogati, i omogućuju realističnije renderiranje modela.

Do sada, proceduralno modeliranje se uglavnom koristilo za sintezu virtualnih
građevina. Ova disertacija istražuje načine na koje se proceduralni modeli mogu
koristiti u kontekstu rekonstrukcije urbanih prostora. Krajnji cilj disertacije
je automatsko stvaranje proceduralnih modela iz postojećih struktura, proces
poznat kao inverzno proceduralno modeliranje. Glavni izazov ovog postupka je
određivanje odgovarajućih produkcija i njihovih parametera, što tipično rezultira
velikim prostorom pretraživanja.
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U prvom dijelu disertacije pretpostavlja se da je struktura gramatike poznata,
dok parametri produkcija mogu varirati. Predstavljen je sustav za 3D
rekonstrukciju građevina gdje gramatika vodi proces modeliranja, primajući
informacije o strukturi od detektora objekata. Mana ovakvog pristupa je
potreba za odabirom ispravne gramatike prije samog postupka rekonstrukcije.
Stoga, razvijen je dodatni algoritam za automatski odabir odgovarajuće stilske
gramatike, na temelju vizualnog prepoznavanja arhitektonskog stila građevine.

Trenutno, glavni nedostatak proceduralnih gramatika je činjenica da njihovo
stvaranje nije trivijalan proces, i zahtijeva ekspertno poznavanje domene. Osim
toga, obilje različitih arhitektonskih stilova u svijetu bi zahtijevalo ručno
kreiranje mnogo takvih gramatika. Kao jedan način rješavanja ovog problema,
drugi dio disertacije koristi pojednostavljeni model a priori znanja potrebnog za
rekonstrukciju građevina. Umjesto cjelovitih gramatika, koristi se skup općenitih
pravila neovisnih o stilu građevine. U pristupu odozdo-prema-gore, provedena
je visokokvalitetna semantička segmentacija fotografija ili oblaka 3D točaka
produciranih SfM pristupom. Ova segmentacija se kasnije može pretvoriti u
proceduralni model specifičan za određenu građevinu, omogućavajući realistično
renderiranje.

U trećem dijelu disertacije predstavljeno je rješenje za problem oskudice
proceduralnih gramatika kroz njihovo učenje iz podataka. Pokazano je da
stohastičke gramatike mogu biti automatski naučene iz skupa anotiranih
fotografija fasada građevina. Naučene gramatike se pokazuju jednako kvalitetne
za rekonstrukciju građevina kao i ručno napisane gramatike. Nakon toga,
eliminirana je potreba za ručnom anotacijom fotografija kroz korištenje ranije
navedene metode za automatsku semantičku segmentaciju. Konačno, naučene
reprezentacije fasada koriste se za sintezu novih, virtualnih zgrada, usporedbu
fasada i dohvat sličnih fotografija iz baze podataka.

Predstavljeni modeli su evaluirani na nekoliko skupova podataka, i pokazuju
rezultate iznad performansi trenutno najboljih modela u svojim domenama,
u pogledu preciznosti i brzine. Zaključak ove disertacije jest da je problem
inverznog proceduralnog modeliranja rješiv kroz primjenu učenja gramatika
iz podataka, uklanjajući potrebu za ljudskom intervencijom, te ujedno otvara
nove pravce budućeg istraživanja.
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Chapter 1

Introduction

1.1 A Brief History of City Modeling

Attempts at urban space modeling can be traced back as early as 1400 BC. In
the Sumerian city of Nippur, a clay tablet was discovered containing the oldest
known city map, depicting the labeled points of interest in the ancient city, such
as the city park, walls, and the river Euphrates.

Yet, there are very few written sources from the classical ages about the theory of
architecture or city planning that have survived to this day. The only surviving
written source on classical architecture is the famous work of Vitruvius, De
architectura. In his treatise, Vitruvius compiled the sum of knowledge on
Roman building methods, including notes on town planning, construction of
temples, civil and domestic buildings. Although the original ancient illustrations
were lost, the detailed instructions in the original text allowed historians and
architects to recreate the models according to their interpretations (see Fig. 1.2).

Figure 1.1: Ancient map of the Mesopotamian holy city, Nippur, circa 1400 BC.

1
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Figure 1.2: Ideal city plans from vari-
ous Renaissance authors, as inspired
by Vitruvius.

Figure 1.3: Aerial view of the Italian
city of Palmanova, built in 1593.
according to Vitruvius’ plans.

Figure 1.4: A depiction of Vienna, from Nuremberg Chronicle, 1493.

In the Late Middle Ages, city maps and illustrations had both a topographical
and artistic purpose. Since the theory of perspective projection was not
developed until Renaissance, cities were mostly depicted as orthographic plans,
or as seen from profile (See Fig. 1.4). Many such examples are compiled in
one of the most comprehensive collections of city illustrations of that age, the
Nuremberg Chronicle.

In Renaissance, artists and architects became interested in how to create realistic
depictions of landscapes, urban spaces and buildings so that they look the same
as in real world. The solution in the form of linear perspective was brought
forth by Filippo Brunelleschi, the famous architect and creator of the Florence
Cathedral dome. Consequently, cartographers and artists started using the
new technique to create geometrically exact 3D perspective views of cities,
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Figure 1.5: A perspective view of
Antwerp, from the Civitates orbis
terrarum atlas, Braun and Hogenberg,
1572.

Figure 1.6: St. Blaise holding the
model of the city of Dubrovnik, Nikola
Božidarević, beginning of the 16th
century.

see Fig. 1.5.

An interesting example of a ‘virtual’ city model appearing in a Renaissance
painting is that of the city of Dubrovnik, Croatia. In a tryptych on a side altar
in the Dominican monastery in Dubrovnik, the saint protector of the city, St.
Blaise, is depicted holding a 3D model of the city in his hands, see Fig. 1.6.

1.2 City Modeling Today

The advent of technology has allowed us to create maps and models of cities
in ways never before imagined. These models find their application in several
fields, such as digital mapping, urban planning, archaeology, and entertainment
industry.

1.2.1 Digital Mapping

In recent years, tech giants like Google, Microsoft and Apple have engaged
in a race of providing high-quality city models to the broad public. Initial
models produced by their methods were quite rudimentary. For example, in
the early versions of Google Earth software, cities were modeled as satellite
images pasted on the 3D model of the globe, followed by simple extrusions of
building outlines. Afterwards, users were encouraged to manually create their
own building models in a sketching software, such as Google Sketchup. The
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Figure 1.7: A Google Earth model of Dubrovnik with user-created models in
Sketchup, 2011.

sketching approach opened up the possibility of crowdsourcing the city modeling
task to millions of people, even non-experts, but it also had several drawbacks.
For example, only some buildings were modeled (usually the attractive or
popular landmarks), and the quality of each model differed depending on the
invested modeling time or the skill of the modeler. As an illustration, Fig. 1.7
shows the incomplete model of Dubrovnik as it appeared in Google Earth in
2011.

1.2.2 Urban Planning

Accurate 3D city models on varying levels of abstraction can be utilized to
represent the current state of an existing urban environment. These models can
then be used by the city administration to e.g. manage spatial regulatory rules,
analyze the urban energy efficiency, determine the solar power potential of roofs,
plan the placement of wireless access points, etc. The creation of these models
is often assigned to specialized companies which provide services of airborne or
ground-based surveys combined with manual GIS modeling, as exemplified in
Fig. 1.8.

1.2.3 Archaeology

Thanks to the rapid development of computer graphics and imaging,
archaeologists can now use computer software to model and visualize
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Figure 1.8: A 3D building model of Dubrovnik based on LiDAR laser scans.
The model is in accordance with the Level-of-Detail 2 in the CityGML standard.
Image courtesy GDi GISDATA, 2012.

Figure 1.9: A blended image of the reconstruction and a photograph of the
second Temple of Hera, c. 460-450 BC, Paestum, Italy. See Chapter 4 for more
details on the automatic reconstruction process.

archaelogical sites in 3D. The 3D models of archaelogical sites created by experts
in the field facilitate scientific discussion about reconstruction hypotheses, and
can also be used in education, entertainment and site marketing. Some examples
of these methods include Rome Reborn [89], an initiative to create a digital
model of ancient Rome; 3D reconstruction of Mayan buildings in Xkipche [124],
and modeling of Greek Doric temples [116], see Fig. 1.9.
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Figure 1.10: City modeling in the movie industry: a CGI-enhanced image of
Dubrovnik represents the fictional city of King’s Landing in Westeros. Image
courtesy: Mackevision Medien Design GmbH, 2014.

1.2.4 Entertainment Industry

Contemporary computer games based on the open-world paradigm sport
complete virtual cityscapes, often inspired by real cities. In movie industry,
a common practice is to augment the images or videos of existing cities with
computer-generated imagery (CGI). As an example, a city in a popular TV
show ‘Game of Thrones’ was based on Dubrovnik, see Fig. 1.10. The created
models are however based on manual work of a whole team of visual effect
designers, utilizing expert tools such as Maya or 3D Studio Max.

1.3 Data Acquisition

Two most popular methods for obtaining the data from urban scenes are imagery
and LiDAR.
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Figure 1.11: A point cloud model of the city of Dubrovnik automatically created
from 58k tourist photographs [2], 2009.

1.3.1 Imagery

Due to the widespread use of digital cameras nowadays, vast amounts of
photographs are being created each year1. Many of these photographs are
available on the Internet, a large portion of them depicting urban sites. Various
tools have been developed that harvest this source of information. For example,
the project ‘Building Rome in a Day’ [2] mines images from popular touristic
destinations, such as Rome, Venice or Dubrovnik, and creates 3D models from
the automatically downloaded data, see Fig. 1.11.

On the other hand, aerial and satellite imagery are becoming more and more
popular thanks to web-mapping projects, such as Apple Maps, Bing Maps, and
Google Earth. The techniques of aerial photogrammetry have advanced to
the point where they can be used to automatically produce 3D city models,
complete with trees, landmarks and realistic textures.

1.3.2 LiDAR

As an alternative to image-based methods, it is possible to use LiDAR2, i.e.
3D laser scanning. Although LiDAR provides relatively precise data in form
of semi-dense 3D point clouds, it has its drawbacks, such as the inability to

1According to the survey of [129], an estimate of tens of billions of photos are taken
worldwide each year.

2Abbreviation of Light Radar, although sometimes interpreted as Light Detection and
Ranging.
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Figure 1.12: The concept of 5 Levels of Detail (LOD) as defined in CityGML
2.0. Image from [13].

capture colour information and bad performance on transparent surfaces. More
importantly, the relatively high cost of LiDAR devices limits its application to
land surveying offices or civil engineering bureaus.

Some approaches use both sources of data (images and LiDAR) to combine the
high resolution of image data with the more precise 3D structure obtained from
LiDAR data. For example, at the time of writing of this text, Nokia is using
a fleet of 300 cars equipped with LiDAR and high-resolution cameras to map
major cities around the world. In the future, the produced models could be
used by driverless cars to navigate roadways.

1.3.3 Terrestrial vs. Aerial

Both image-based and LiDAR surveying systems can be mounted on terrestrial
or aerial platforms. These platforms consist of a set of cameras (or a LiDAR
sensor, or a combination of the two), a GPS receiver, an inertial measurement
unit (IMU), an onboard computer and data storage devices.

Different platforms are suitable for urban models with varying level of detail
(LOD). According to the OpenGIS CityGML standard [71], airborne data is
more suitable for coarse building modeling (LOD1 and LOD2), as it captures
the building in its entirety, including roofs. However, its limited resolution on
the facade and street level calls for the use of terrestrial data when it comes to
individual building and facade modeling (LOD2 and LOD3). See Fig. 1.12 for
an illustration of different LOD models in CityGML.

1.4 Limitations of Existing Methods

Current automatic urban reconstruction methods are far from being perfect.
Human intervention is typically needed to remove visible artifacts, correct
textures or fill in incomplete data. Errors in the reconstruction appear regardless
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of the capturing technology. For example, image-based methods perform poorly
on non-textured surfaces or in presence of significant variation in illumination,
while LiDAR encounters problems when dealing with transparent surfaces.

Yet, strong priors can be used as soon as one knows what it is that one is trying
to model. Knowledge about the semantics of the scene can not only aid the
reconstruction process, but also allow for new applications of generated models.
For example, one could simulate living cityscapes with crowds of people entering
buildings through doors, looking through windows, using public transport, etc.
Semantic models also enable data mining queries, for example, calculating the
combined surface area of all windows in a city.3

1.5 Requirements

We identify the following 5 requirements needed for a comprehensive system for
semantically-driven urban reconstruction:

• R1. The system must be able to model different types of buildings,
architectural styles, landmarks etc.

• R2. The system should use a consistent representation (model) of buildings
that is rich in semantics, allows easy rendering, model retrieval, and novel
model design.

• R3. If expert-designed building models are available, the system should
be able to use these models to reconstruct existing buildings.

• R4. In the cases when no models are available, or we are dealing with
an atypical building, the system should perform reconstruction with a
bottom-up approach.

• R5. The system should be able to learn from experience, i.e. to use
previously reconstructed buildings to help guide the process in the future.

In recent years, procedural modeling, a technique from the field of computer
graphics, has emerged as a powerful method to model urban spaces. Procedural
modeling describes 3D models of objects through instantiations of a series of
rules. It allows the modeler to create simple textual representations, rule-based
descriptions of complex models like plants, facades, buildings, or street networks.

3Interestingly, a similar question, ‘How much would you charge to wash all the windows in
Seattle?’ is allegedly posed to candidates applying for a job at companies such as Amazon
and Google, aimed at evaluating their estimation skills.
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In addition, procedural models are rich in terms of semantics. Semantic concepts
like windows, floors, doors, balconies, etc. are made explicit in the ruleset.
Procedural city models can therefore be explored at a high semantic level.
Moreover, these models are typically parametric, so by changing the parameters
of a single model, a large number of variations can be created. This makes
procedural modeling an ideal candidate to satisfy requirements R1 and R2.

The next question is if procedural modeling can be used to reconstruct existing
buildings. This is the topic of inverse procedural modeling, i.e. discovering
the procedural model that fits the real-world observations. One method of
doing this would be to start from a parametric procedural model, and then
attempt to find the optimal set of parameters such that the resulting model
resembles the observations as much as possible. This satisfies requirement R3, as
a reconstruction of the existing building can be posed as a parameter estimation
problem.

Ideally, not only the parameters, but the procedural rules themselves would be
inferred from real-world observations (R5). However, there is a large semantic
gap between images and procedural grammars, which makes grammar learning
directly from images a very challenging problem. In order to close this gap, a
bottom-up approach for semantic analysis of images would prove useful, not
only for reconstruction of atypical buildings (R4) but also to bootstrap the
model learning procedure (R5).

Having identified the requirements and the means of satisfying them, it becomes
clear that this thesis is going to be positioned on the intersection of computer
vision and computer graphics. Since procedural models are typically represented
with formal grammars, we will also venture into the domain of formal language
theory, and come into contact with the field of natural language processing,
especially when encountering problems such as grammar parsing and inference.

1.6 Motivation

Motivated by the requirements from the previous section, we formulate five
main research questions which are the topic of this thesis:

• RQ1. What kind of procedural models are useful for the task of city-scale
reconstruction?

• RQ2. How can we fit an appropriate procedural model to observed data
in an efficient way?
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• RQ3. How can we reconstruct buildings when no procedural model is
available?

• RQ4. Is it possible to learn the procedural rules from data in a supervised
way, assuming there is no noise in the training data?

• RQ5. Can we learn procedural models even from noisy data?

To address the question RQ1, we investigate the procedural grammars commonly
used in architectural modeling, paying attention to their usability for forward
modeling, simplicity, and the possibility of inference. The generalization
capabilities of different grammars have a high impact on the obtained results.
A grammar that is too general does not introduce enough constraints, which
keeps the search space too large. On the other hand, a grammar that is too
specific might be applicable to a very small subset of buildings, thus making it
less useful for large scale reconstruction.

As will be shown later in the text, our intuition is that one particular procedural
grammar roughly corresponds to an architectural style. Thus, to select the right
procedural model for each building, we investigate the problem of architectural
style classification (R1 and RQ2). We investigate different ways of fitting the
selected grammars to a certain building, either by direct estimation of grammar
parameters, or exploration of the parameter space (R3 and RQ2).

To address R4 and RQ3, we investigate bottom-up approaches for semantic
segmentation of buildings and facades. In this case, when procedural models are
not available from the outset, we introduce general architectural principles that
allow us to express preferences such as symmetry or alignment, which help us
in closing the semantic gap between image pixels and semantically meaningful
regions of a building, such as windows or balconies. The proposed approach
analyzes one building at a time, producing independent building models.

Learning grammar rules from annotated data (R5 and RQ4) is investigated from
a Bayesian perspective, following previous success stories in grammar learning
in natural language. We pose the grammar inference problem as a search
problem driven by a Minimum Description Length principle. This allows us to
automatically learn a grammar for a certain building style, given a sufficient
amount of clean training data in the form of images annotated with semantic
classes.

Finally, we address the problem of structure learning from noisy data (RQ5)
as a semi-supervised problem. Instead of relying on supervision in form of
manually annotated images, we propose a co-segmentation approach which
discovers inherent similarities between facades in the database, while keeping
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the structure compatible with existing models of procedural grammars. Some
supervision is added through the use of a generic bottom-up classifier (RQ4).

1.7 Contributions

In the following we present the major contributions of this thesis, ordered by
their apperance in the text.

1. We present a system to recognize the architectural style of a building,
based on low-level features. To make this problem applicable to street-side
imagery, we introduce pre-processing steps which rectify the perspective
image and separate individual facades.

2. We propose an approach to perform 3D building reconstruction based on
an existing procedural grammar. We use Structure from Motion (SfM)
and object detectors to find the optimal parameters of the grammar. The
approach is demonstrated in the case study of Greek Doric temples.

3. In the case when a procedural grammar is not available, we devise a
three-layered approach for semantic segmentation of building facades.
We achieve good results by using a combination of strong image region
features, object detectors and architectural knowledge. The latter is
introduced in the form of novel weak architectural principles.

4. We scale the facade segmentation approach to street-side scenes with a
large number of images. Starting from an SfM reconstruction, the system
separates facades and performs classification purely in 3D, achieving
significant speed benefits which allow us to analyze entire streets in a
matter of minutes.

5. We propose a Bayesian approach to learn a procedural grammar from
a set of annotated facade images. The induced grammar can be used
for creating novel instances of the same building style. When applied to
semantic segmentation of existing facade imagery, obtained results are
comparable to approaches that use a manually designed grammar.

6. Finally, we present an approach that learns structural facade representa-
tions even from noisy data. Instead of relying on image annotation, we
use a co-segmentation approach that utilizes low-level image features and
labeled images from a semantic classifier. We show that the approach
produces consistent hierarchical segmentations, usable for facade retrieval
and conversion into procedural grammars.
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Other, smaller contributions are introduced in their respective chapters, for
instance the 2D Earley parser, which is a building block of our Bayesian grammar
learning approach.

1.8 Thesis Outline

This thesis is structured as follows. In Chapter 2 we introduce some of the basic
concepts used in the thesis, such as formal grammars and procedural modeling.

Chapter 3 deals with prerequisite steps needed for grammar-based urban
reconstruction. In large scale applications, such as driving a mobile mapping
system through a city, many different architectural styles may be observed.
For each style, a different grammar might be available, and the system must
decide which grammar to load. Therefore, we propose a system to classify the
architectural style based only on image features. Furthermore, the system also
filters images containing clutter, rectifies the input perspective images to a
fronto-parallel view, and performs separation of individual facades.

In Chapter 4 we perform 3D building reconstruction using an expert-written
grammar for Greek Doric temples. In this case, the final reconstruction relies
strongly on the meta-knowledge encoded in the rules of the procedural grammar.
The rules are enriched with parameters such as the size of the temple, height
of its columns etc. We propose to estimate these parameters directly through
the combination of structure from motion (SfM) and adaptive object detectors.
Finally, building reconstruction is performed by instantiating the procedural
model with the learned parameters.

In Chapter 5 we propose a bottom-up approach for semantic segmentation of
building facades. The system is organized in three distinct layers, representing
increasing levels of abstraction. Region-based semantic segmentation from
the first layer is combined with object detectors with a Conditional Random
Field formulation in the second layer. The third layer introduces architectural
knowledge, but unlike grammar-based approaches, we use much weaker priors,
in the form of intuitive architectural principles, such as symmetry, similarity or
alignment. Finally, we use the resulting semantic labeling of the facade image
to create a realistic instance-specific procedural model, enriched with features
such as protruding balconies and reflective windows.

Chapter 6 generalizes the previous approach to three dimensions, starting from a
point cloud of a street-side scene obtained by running standard SfM techniques.
We then perform classification and facade separation directly in 3D, instead
of relying on the original perspective images. This approach results in high-
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quality scene labeling with tremendous speed improvements. Further quality
improvements may be obtained by complementing the approach with its 2D
counterpart. Finally, we adapt the weak architectural principles to 3D, and
propose a more efficient optimization scheme based on integer programming.

In Chapter 7 we present an approach for automatic induction of a specific kind
of procedural grammars from annotated data. Specifically, we investigate how
two-dimensional stochastic context-free grammars can be inferred from a set
of ground-truth labelings of building facades. To accomplish this, we adapt a
technique from the field of natural language processing, namely Bayesian model
merging. We show that the induced stochastic grammar has multiple uses.
First, we can sample designs from the grammar to produce novel facades similar
to ones in the training set. Second, the grammar can be used to semantically
segment existing images of facades outside of the training set. Facade parsing
based on the learned grammar is shown to be on par with approaches that use
an expert-designed procedural grammar.

Chapter 8 introduces an approach for automatic discovery of high-level structural
representations of building facades, with no need for ground-truth annotations.
Instead, we propose a joint analysis of a set of facade images and their bottom-
up semantic segmentations. We use the idea of co-segmentation to produce
consistent segmentations, and propose to use graph clustering to identify
semantically similar parts of facades. The process is performed recursively,
resulting in rectilinear subdivisions which can be converted to procedural
grammars to peform virtual facade synthesis, or used directly for applications
such as facade retrieval.

Finally, in Chapter 9 we conclude the thesis with some final remarks, presenting
an outlook and possible future work.



Chapter 2

Background

2.1 Procedural Modeling

Procedural modeling is a generic term that applies to all approaches that use
rewriting rules to generate geometry. Among them, L-systems, generative
modeling and shape grammars are one of the most popular approaches which
find their application in city modeling. Both are subtypes of more general
models known as formal grammars.

2.1.1 Formal Grammars

In the 1950s, Noam Chomsky attempted to define the syntax of natural languages
using precise and simple mathematical rules. In [28], the knowledge of language
is modeled using a formal grammar, which contains a set of production rules
that rewrite strings, i.e. turn one string into another. A formal grammar is
defined as a tuple G = (V, T, S, P ), where

• V is a finite, non-empty set of non-terminal symbols.

• T is a finite, non-empty set of terminal symbols, disjoint from V .

• w ∈ V is the start symbol (sometimes called the axiom, the initial, or the
sentence symbol).

• P is a finite set of productions (rules) of the form α → β where α ∈
(V ∪ T )∗V (V ∪ T )∗ and β ∈ (V ∪ T )∗. Here, ∗ denotes the Kleene star.

15
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Thus, the left-hand side (LHS) α of a production is a string that contains
at least one non-terminal, while the right-hand side (RHS) β is a (possibly
empty) string of terminals and non-terminals.

The generation of a string in a language begins from a string containing only
the start symbol. The productions are then applied one after another until
the resulting string contains only terminal symbols. Each production rewrites
a part of the string equal to the LHS of the production with the RHS of the
production. The sequence of applied productions is called a derivation, while
the set of all strings that can be generated by a formal grammar G is called
a formal language, denoted as L(G). Note that a grammar is a finite object
that can describe a potentially infinite language.

Chomsky organized formal grammars into four classes, by gradually increasing
the restrictions on the form of productions, a classification today known as the
Chomsky hierarchy [27]:

• Type-0 grammars are unrestricted, i.e. they may contain rules that
transform an arbitrary non-zero number of symbols into an arbitrary
(possibly zero) number of symbols.

• Type-1 grammars can be either monotonic or context-sensitive. A
grammar is monotonic if each production satisfies |α| ≤ |β|, while it is
context-sensitive if all productions are of the form γαδ → γβδ. A special
rule allows Type-1 grammars to contain rules of the form S → ε, where S
may not appear on the RHS of any rule, and ε is an empty string. Chomsky
proved [29] that monotonic and context-sensitive types of grammars are
weakly equivalent, i.e. that they generate the same formal language.

• Type-2 grammars are context-free, where each production α → β
satisfies |α| = 1.

• Type-3 grammars can be either right-regular or left-regular. A
grammar is right regular if each of its productions has one of the following
forms:

A→ cB,A→ c, A→ ε,

where A and B are non-terminals (possibly equal), and c is a non-terminal.
Conversely, a grammar is left-regular if its productions are of the form

A→ Bc,A→ c, A→ ε.

Right- and left-regular grammars are weakly equivalent.
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Figure 2.1: “...How he got into my pajamas I’ll never know”. The famous quote
from Groucho Marx is parsed using a simple CFG (left). The symbol ’|’ denotes
a nondeterministic production with multiple choices for the right-hand side.
There are two possible interpretations of the sentence as indicated by the two
parse trees (who is wearing the pajamas?), illustrating ambiguity in natural
language.

Type-(i) grammars include all Type-(i+1) grammars, e.g. all regular grammars
are also context-free. The set of Type-0 grammars includes all formal grammars.
Finally, since there is a countably infinite number of formal grammars, some
languages exist that no formal grammar can generate.

Each of the restrictions on the form of productions reduces the expressive
power of a grammar. The resulting grammars are easier to understand but less
powerful. But is human readability the only reason to use them? Consider the
problem of parsing, i.e. recognizing whether a given string can be generated
by a certain grammar. Parsing allows us to discover the structure of the input,
in certain cases even with presence of incomplete or noisy inputs.

Unfortunately, formal linguistics tells us that the recognition problem cannot be
solved for an arbitrary Type-0 grammar [73]. Moreover, even though parsers for
general Type-1 grammars can in principle always be constructed, the complexity
of these parsers is PSPACE-complete, thus not particularly useful in practice.
In contrast, Type-2 and Type-3 grammars are well-researched, and for these
grammars many efficient parsing algorithms exist.

Type-3 grammars are typically used in the form of regular expressions, for input
matching or to analyze the lexical structure of computer programs. However,
they are not expressive enough to capture more complex structures, such
as natural language. In fact, Type-2 grammars (Context-free grammars or
CFGs) were originally invented by Chomsky to describe the structure of natural
language. Yet, their definition turned out to be too restrictive as well, as many
natural languages exhibit context-sensitivity [156]. Nevertheless, CFGs are still
used in linguistics [139] and in computer science, for example to describe the
structure of programming or markup languages, such as XML. The simplicity
of productions in a CFG, with only one symbol on the LHS of each production,
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Figure 2.2: The Sierpinski triangle constructed with a Sierpinski arrowhead
curve L-system.

enables, the parse of a given string to be represented as a tree, called a parse
tree. See Fig. 2.1 for an example.

2.1.2 L-Systems

Lindenmayer systems (or L-systems for short) are a type of formal grammars,
and one of the earliest approaches to procedural modeling. They were named
after their inventor, Aristid Lindenmayer, a Hungarian botanist who used
these systems to model the growth of plants. Recently, they have found several
applications in computer graphics, such as fractal generation and plant modeling.

An L-system is a string rewriting system, defined as a tuple G = (V,w, P ).
which is similar to a formal grammar definition, except that terminal and
nonterminal symbols are grouped in one The key feature that distinguishes
L-systems from other grammars is parallel rewriting, i.e. L-systems apply all
productions in parallel. This behaviour corresponds to biological organism
growth, where many cell divisions may occur simultaneously.

Although the initial L-system formulation was based on strings, they were soon
adapted to allow a graphic interpretation. Prusinkiewicz [137] utilized turtle
geometry, where the turtle represents a type of cursor with three attributes: x
and y coordinates in the Cartesian plane, and heading (direction in which the
turtle is facing). The turtle responds to commands such as moving forward, and
turning right or left. This geometric interpretation allows L-systems to model
fractals and plants. For example, the Sierpinski triangle as depicted in Fig. 2.2
can be expressed with the following L-system: (V = {X,Y,+,−};w =X;P =
{p1 :X−→ X-Y-X, p2 :Y−→ Y-X-Y}) where symbols X and Y both represent
the command to draw by moving forward one step, while + and - are commands
to turn 60 degrees to the left and to the right, respectively.

L-systems were successfully used to model realistic plants and trees [138]. In
city modeling, they can also be utilized to generate street maps [135]. Inverse
modeling approaches, i.e. discovering the L-system generating a given model,
have so far been limited to 2D vector graphics [166].
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Figure 2.3: An example of a traditional shape grammar. The first row shows the
starting shape (axiom) and the two rules the grammar. The second and third
row show two possible designs that can be created with this shape grammar.

2.1.3 Shape Grammars

In 1975, Stiny [167] introduced the idea of shape grammars to the field of
architecture. The formulation operates on arrangements of lines and points,
called shapes. Some points may be labeled by associating a symbol to it. A
labeled shape then contains the shape and a set of labeled points. Formally, a
shape grammar is defined by four components [168]:

1. S is a finite set of shapes;

2. L is a finite set of symbols;

3. w is the initial labeled shape (axiom) in (S ∪ L)+.

4. P is a finite set of shape rules (productions) of the form α→ β where α
is a labeled shape in (S ∪ L)+ and β is a labeled shape in (S ∪ L)∗;

The shape rules are applied one at a time to the axiom, or to the shapes
previously generated by the rules. A shape rule α → β can be applied to a
labeled shape γ when a transformation τ exists such that τ(α) is a subshape of
γ (subshape problem). The sequence of rule applications is called a derivation.
Fig. 2.3 shows an example grammar and its two possible derivations.

The set of all shapes that can be generated by a shape grammar is called
a language. Notice that even in this simple example with only two rules,
the language can be infinite, and the generated designs quite diverse. Stiny



20 BACKGROUND

Figure 2.4: A small facade generated using a split grammar from [202]. The
final model is obtained with texturing and inserting pre-modeled elements such
as railings.

advocated this liberty of shape grammars, because it supports two important
aspects of their expressive power: emergence and ambiguity. On the other hand,
the behaviour and design outcomes of the grammar can be hard to control.
Thus, the interpretation of shape grammars is usually done manually, or with
the assistance of a computer, with a human deciding on which rules to apply.

In order to apply the shape grammar formalism in computer graphics, an
automatic shape grammar interpreter is required. This in turn requires solving
the subshape problem, i.e. determining all the possible locations in the current
shape where the next rule could be applied. This problem was shown to be
challenging even for simple grammars, making the problems of shape grammar
parsing and inference infeasible [62].

Interest for shape grammars in computer graphics was rekindled when Wonka
et al. [202] presented the idea of split grammars, a special type of set
grammars [169]. Set grammars circumvent the subshape matching problem
by assigning only one symbol to a given shape, thus reducing the problem
to simple symbol matching. Elaborating on this idea, split grammars further
restrict the set of allowed grammar rules to shape subdivision along a coordinate
axis. For example, starting from an initial shape of a building, a split grammar
can generate facades of the building, which are then split into their structural
elements, repeating the process down to the level of individual design elements
like doors, windows, ornaments etc. Wonka also introduced a separate grammar
to control the derivation process and to limit the spatial distribution of subshapes
in a way that corresponds to architectural principles. Fig. 2.4 shows an example
derivation of a small facade using a toy split grammar.

The framework of split grammars was later extended by Müller et al. [125] with
the introduction of the CGA shape grammar, which we will detail in the next
section.
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Figure 2.5: The basic attributes of a shape in the CGA shape grammar. Image
source: ESRI CityEngine documentation.

2.1.4 CGA Shape Grammar

CGA (Computer Generated Architecture) Shape is a particular type of split
grammars created for easy procedural modeling of building mass models [125]
and facades [126]. It has since been developed as an integral part of the
commercial software CityEngine [42]. In the following, we detail the CGA
specification.

Definition

The central element of the CGA grammar is a shape. A shape is identified with
a string called the shape symbol, which is used to generate the successors of the
shape during the derivation process. Additionally, each shape has associated
attributes, which contain the numeric and spatial description of the shape. The
most important shape attributes are:

• Geometry, which contains an arbitrary polygonal mesh, color, material
and texture information;

• Scope, which represents the oriented bounding box for the shape in space,
relative to the pivot;

• Pivot, which describes the coordinate system of the shape, relative to the
origin of the initial shape.

Fig. 2.5 illustrates the introduced concepts.
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Derivation

Similar to L-systems, the CGA shape grammar operates on a configuration,
or a finite set of shapes, and starts the derivation from the axiom. However,
unlike L-systems, CGA shape grammar is a sequential system, where only one
shape from the configuration is selected in each step of the derivation, and
an appropriate rule for replacement is chosen. The derivation stops when the
configuration contains no more non-terminal shapes. The derivation tree is
explored in a breadth-first manner, first deriving all the shapes in one level
before moving to the next level.

Production Rules

The general form of a production rule in CGA is

lhs : cond→ rhs : prob

where lhs is a non-terminal shape symbol, which is replaced with the set of
symbols rhs, if the condition cond is satisfied. The condition allows context-
sensitivity in rule derivation. For example, a window should only be placed if
there is enough space on the wall. Stochastic variations of a single model are
possible due to the rule selection probability prob. The symbols on the right-
hand side of the rule rhs can be defined explicitly or through shape operations,
defined in the next section.

Operations

Shape operations can create new shapes and alter the current shape. In the
following, we summarize some of the most important operations.

• The insert operation reads a geometry asset, e.g. a polygon mesh, from
a file and inserts it in the scope. It is most commonly used to read atomic
elements which should not be generated procedurally, like ornaments.

• The extrude operation can create 3D shapes from 2D faces by extruding
each face polygon of the current shape in a given direction. For example,
it can be used to create a building mass model from a given footprint.

• Conversely, the component split operation divides a shape into its
geometric components based on a set of semantic selection keywords. For
example, it can be used to select faces of the building that are adjacent
to a road.
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• The split operation subdivides the current shape along a specified axis
into a set of smaller shapes. It is indispensable in facade modeling, e.g.
for splitting the facade into floors, or floors into a set of repeating window
tiles. Repeating elements can be modeled by using a * modifier on a
sub-shape, see Fig. 2.6 for an example.

Other operations include translation, rotation and scaling of the scope, texturing,
specific functions for roof creation etc.

Applications

As mentioned earlier, the CGA shape grammar owes much of its popularity to
its implementation in CityEngine [42], a commercial software for procedural
modeling. Since their introduction, CGA-based procedural models have been
successfully used in a variety of applications, such as archaelogy and city
planning. Some examples of the former include a reconstruction of ancient
Rome [89], Pompeii [123] and Mayan buildings [124], while prime examples of
the latter are the Marseille urban planning project [43] and the Swiss Village in
Masdar City [44], see Fig. 2.7.

2.1.5 Other Approaches

In this thesis (most notably in Part 1) we use the CGA shape grammar as our
principal procedural modeling tool. Additionally, the grammars introduced
in Part 2 and Part 3 are compatible with CGA and are converted into the
appropriate format when necessary. Our decision is motivated by the proven
usefulness of CGA in the field of urban modeling, human-readable syntax and
the availability of a procedural engine to instantiate the models (CityEngine).

However, the methods presented in this thesis may be adapted to work with
other types of procedural grammars and engines. One example would be the
Centrale Procedural Architect (CPA) [161], which is many ways similar to
CGA, but uses a different derivation scheme (DFS instead of BFS) and contains
additional features such as consistency and differentiation tags.

The G2 grammar [99] can be used to increase the degrees of freedom of simple
boxes in CGA, allowing realistic creation of interconnected structures such as
bridges or rollercoasters [98]. Finally, for building mass-modeling, one could
also use a Manhattan-world rewriting system introduced by Vanegas et al. [195].
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� �
1 attr groundfloor_height = 4
2 attr floor_height = 3.5
3 attr tile_width = 3
4 attr height = 11
5 attr wallColor = "# fefefe "
6 window_asset = " facades / window .obj"
7

8 Lot --> extrude ( height ) Building
9

10 Building --> comp(f) { front : FrontFacade | side : SideFacade | top: Roof
}

11

12 FrontFacade --> split (y) {
13 groundfloor_height : Groundfloor | { ~ floor_height : Floor }* }
14

15 SideFacade --> split (y) {
16 groundfloor_height : Floor | { ~ floor_height : Floor }* }
17

18 Floor --> split (x) {
19 1 : Wall | { ~ tile_width : Tile }* | 1 : Wall }
20

21 Groundfloor --> split (x) {
22 1 : Wall | { ~ tile_width : Tile }* | ~ tile_width : EntranceTile | 1 :

Wall }
23

24 Tile --> split (x) {
25 ~1 : Wall | 2 : split (y){ 1: Wall | 1.5: Window | ~1: Wall }| ~1 : Wall

}
26

27 EntranceTile --> split (x) {
28 ~1 : SolidWall | 2 : split (y){ 2.5: Door | ~2: SolidWall } | ~1 :

SolidWall }
29

30 Window --> s( ’1 , ’1 ,0.4) t(0 ,0 , -0.25) i( window_asset )
31 Door --> s( ’1 , ’1 ,0.1) t(0 ,0 , -0.5) i(" builtin :cube")
32 Wall --> color ( wallColor )
33 SolidWall --> color ( wallColor ) s( ’1 , ’1 ,0.4) t(0 ,0 , -0.4) i(" builtin :cube:

notex ")
34 � �

Figure 2.6: A simple building generated in CityEngine with its corresponding
CGA code.
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Figure 2.7: Use case scenarios for CityEngine [42]. Left: Marseille urban
planning, right: Swiss Village, Masdar City. Image courtesy: Esri, Inc.

Figure 2.8: A basic model of the Cologne Cathedral, created using Generative
Modeling Language. The whole model fits in 126 KB of GML code.

Finally, we mention Generative Modeling Language [76], or GML for short1, a
procedural modeling technique that allows algorithmical creation of complex
3D graphics. It is a stack-based programming language, inspired with Adobe
PostScript, allowing the creation of high-level shape operators by combining
low-level operators. GML can be used to create quite complex models such
as Gothic Cathedrals in a few kilobytes of code, see Fig. 2.8. Although quite
powerful, allowing procedural modeling of subdivision surfaces and free-form
meshes, the syntax of GML is arguably more complex than CGA and perhaps
better suited for automatic generation by specialized tools (similar to PostScript
drivers).

1Not to be confused with the previously introduced CityGML, where GML stands for
Geography Markup Language
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Grammar-Based
Reconstruction
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Chapter 3

Architectural Style
Classification

In recent years, procedural modeling has proven to be a very valuable tool for
automatic reconstruction of architectural scenes. However, current algorithms
rely on the assumption that the building style is known in order to load the
appropriate procedural grammar. Determining the building style has been
either implicit, or performed as a manual task. In this chapter1 , we propose an
algorithm which automates this process through classification of architectural
styles from street-side images. Our classifier first winnows the set of input
images so that only images containing buildings remain. Afterwards, the system
separates individual facades within a single image and determines the building
style for each building. This information can then be used to initialize a
procedural reconstruction process, by loading the appropriate style grammar.
We have trained our classifier to distinguish between several distinct architectural
styles, namely Flemish Renaissance, Haussmannian and Neoclassical. We
demonstrate the results of our approach on various street-side images collected.

1This chapter is based on the joint work with Markus Mathias, Julien Weissenberg and
Luc Van Gool, published in 3D-ARCH 2011 [116]. While all parts of this work are a result of
joint work and discussion, the first author Markus Mathias contributed in facade rectification
and NBNN classification. Anđelo Martinović was mainly involved in scene classification and
facade splitting.
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3.1 Introduction

It takes several man-years to accurately model an existing city such as New York
or Paris (e.g. 15 man years for the New York model in the King Kong movie).
As said earlier, procedural modeling provides us with a faster alternative, by
reconstructing a detailed model of a building from a set of images, or even
from a single image. Considering the vast diversity of buildings and their
appearances in images, the underlying optimization problem easily becomes
intractable if the search space of all possible building styles has to be explored.
Thus, all currently available inverse procedural modeling algorithms narrow
down their search by implicitly assuming an architectural style. Müller et
al. [126] developed a method based on the identification of repetitive patterns
of regular, grid-like facades. Teboul et al. [182] demonstrate their procedural
modeling approach based the Haussmannian architectural style, ubiquitous in
Paris. The system of Vanegas et al. [195] assumes that building outlines follow
a Manhattan-world grammar. In all cases, the style grammar is considered a
given. Whereas for landmarks this may be derived from Wikipedia page coming
with their images [140], street-side imagery typically does not come with style
information.

We tackle the problem of grammar selection by proposing a four-stage method
for automatic building classification based on the architectural style. The style
information can then be used to select the appropriate procedural grammar for
the task of building reconstruction. In this chapter, we demonstrate our approach
on three distinct architectural styles: Flemish Renaissance, Haussmannian,
and Neoclassical. Please note that we use a loose interpretation of these
architectural terms, as our focus is on the categorization of building appearance,
not actual provenance. For example, our Flemish Renaissance dataset also
contains buildings from the Flemish Renaissance Revival style, which both have
similar visual features. In addition, we created a publicly available dataset
of facade images spanning the three presented styles, taken from the cities of
Leuven, Antwerp and Brussels, in Belgium.

Interestingly, little research has been carried out in the field of architectural style
identification. Romer and Plumer [146] aim at classifying buildings belonging
to Wilhelminian style from a simplified 3D city model. However, their approach
is based on a few coarse features (building footprint and height), with no image
support.

Available image classification systems such as [18] often distinguish between
images whose appearances are very different. Much focus has been on
distinguishing indoor from outdoor scenes [136, 174]. Conversely, facade pictures
share many common features, regardless of their styles. For instance, simple
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Figure 3.1: Overview of our architectural style classification approach.

colour or edge cues are insufficient to classify Haussmannian vs. Neoclassical
buildings.

To the best of our knowledge, we are the first to tackle the problem of image-
based architectural style identification. Our system provides a systematic and
comprehensive way of estimating the building style from a single street-side
image, incorporating steps of scene classification, image rectification, facade
splitting and style classification.

3.2 System overview

The overarching goal of this work is to automate the process of modeling
cities from images. Thus, we must take into account the problems arising
from the setup of cameras mounted on a mobile mapping van. In this setup,
cameras typically capture street-side images every few seconds. It is likely that
a significant number of captured images will not even contain buildings, but
other integral parts of urban areas, such as parks or trees. In very narrow
streets, only small parts of buildings could be captured, insufficient for style
classification. We therefore consider the additional problem of filtering out only
those images that are useful for building modeling.

Fig. 3.1 gives an overview of our proposed approach. The first step is to
determine if the image actually contains building facades (Sec. 3.3). If this
condition is met, we attempt to rectify the image (Sec. 3.4), as the images of
buildings taken from street level can contain significant perspective distortions.
After the image has been rectified, we still face the problem of identifying
individual buildings in the image. Urban areas can contain long, unbroken
building blocks, but the architectural styles may vary from facade to facade.
In Sec. 3.5 we use edge features in a heuristic approach to find separators of
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individual buildings. Finally, we extract SIFT and self-similarity features from
each facade, and use a Naive-Bayes Nearest-Neighbor (NBNN) classifier to
determine the architectural style of the facade (Sec. 3.6). The obtained results
are summarized in Sec. 3.7.

3.3 Scene classification

Mobile mapping images come with different content and quality. There are
typically several cameras mounted on a van, with different viewing directions.
Therefore, the first step in the process of building classification consists of
winnowing all the collected images into a set of images that actually contain
objects of interest. We want this step to be as fast as possible, due to the fact
that it will have to deal with all images taken. On the other hand, the algorithm
is desired to have good generalization to robustly deal with novel scenes. It has
been shown by Oliva and Torralba [134] that humans have the capability to
determine the type of the scene in less than 200ms. This abstract representation
of the scene is called gist, and has served as a starting point for the development
of numerous algorithms for fast scene classification [159, 133]. These holistic
algorithms attempt to capture the global scene properties through various
low-level image features. The suitability of different gist-based approaches for
scene categorization is discussed by Siagian and Itti [160]. Due to its simplicity,
speed and suitability for global scene classification, we opt for a gist-based scene
classification step.

3.3.1 Scene classes

Based on the inspection of our collected dataset, we identify four most common
scene types in street-side imagery (see Fig. 3.1)

• No buildings - images not containing any buildings. Typical examples in
urban scenarios are parks, gardens and waterfronts.

• Street - images containing facades captured at a high angle to the facade
planes, occurring when the camera orientation coincides with street
direction.

• Facades - images containing one or more facades in their entirety.

• Building part - images containing only a small part of a facade, not enough
for a complete classification or reconstruction.
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Buildings None Part Street Facades
None 100 0 0 0
Part 2.8 85.6 2.4 9.2
Street 0.8 1.2 98 0
Facades 0 7.2 0.4 92.4

Table 3.1: Confusion matrix for the scene classification algorithm. All values
are in percent.

Among the listed scene classes, only the “facades” class enables us to attempt a
complete facade reconstruction. In an image produced by a sideways-mounted
camera, the appearance of the “No building“ class in collected images gives us
the information about a gap in the building block, and that no buildings should
be reconstructed. Similarly, if an image is classified as “Street”, we can deduce
the existence of a street crossing. Finally, the “building part” class informs us
that the building is too large (or the street too narrow) to be captured in a
single image.

3.3.2 Feature extraction and classification

In our implementation of scene classification, we use a similar approach to
Torralba et al. [188]. We use a steerable pyramid of Gabor filters, tuned to 4
scales and 8 orientations. Filter outputs are then averaged on the 4× 4 grid.
This produces a feature vector comprising of 512 features. Classification is
performed using a Support Vector Machine (SVM) with a Gaussian radial basis
kernel function. The SVM is trained using a one-versus-all approach.

The scene classification dataset contains 1616 images in total, split into 4 classes
of 404 images. Apart from using our own images from Leuven and Antwerp,
we extracted additional images from publicly available datasets [151, 187, 178].
The images were then resized to a common size of 256× 256 pixels and sorted
into appropriate classes. Training and test sets are extracted randomly from
the complete dataset, by taking 354 images of each class for training and 50 for
testing.

3.3.3 Results

The process of training and validation is repeated five times with different splits
into training and test sets, to eliminate possible biases in the choice of the
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training set. Results were then averaged, resulting in the confusion matrix in
Table 3.1.

We can see that the most distinct classes are easily separated from the others.
Utilizing the vocabulary from Oliva and Torralba [133], we can deduce that the
images from the ‘No building’ class usually have a high degree of naturalness,
while the ‘Street’ class, characterized by long vanishing lines, has a high degree
of expansion. The misclassification mostly occurs between classes ‘Building
part’ and ‘Facades’. This behavior is expected, because the scenes are visually
quite similar.

3.4 Image rectification

Facade images are often taken in narrow streets, where purely sideways-looking
cameras have a low chance of capturing the complete facade, as opposed to
cameras looking obliquely forward, upward or backward. The facades in images
taken by the latter type of cameras are projectively distorted. Prior rectification
of images to a fronto-parallel view is a prerequisite not only for our facade
splitting algorithm but also in further processing steps. In our implementation
we followed the approach from Liebowitz and Zisserman [109]. After the scene
classification step from Sec. 3.3 we assume that the image contains a planar
surface containing two dominant perpendicular directions, which is a sensible
assumption for man-made scenes.

The relation between points of the image plane x and points in the world plane
x′ can be expressed by the projective transformation matrix H as x′ = Hx,
where x and x′ are homogeneous 3-vectors. The rectification follows a step-wise
process (see Fig. 3.2) by estimating the parameters of the projective P, affine
A and similarity S part of the transformation H, which can be (uniquely)
decomposed into:

H = SAP (3.1)

The projective transformation matrix has the form

P =

 1 0 0
0 1 0
l1 l2 l3

 , (3.2)

where l∞ = (l1, l2, l3)T denotes the vanishing line of the plane. Parallel lines
in the world plane intersect at vanishing points in the distorted image. All
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Figure 3.2: Rectification process: (a) input image with dominant lines,
(b) projective distortion removal (c) affine distortion removal (d) similarity
transformation

vanishing points lie on l∞. To find these vanishing points we detect lines in the
image using the publicly available implementation of the state-of-the-art line
detector [8]. Then we use RANSAC [49] to detect the two vanishing points in
the image.

The affine transformation:

A =

 1
β −αβ 0
0 1 0
0 0 1

 (3.3)

has two degrees of freedom represented by the parameters α and β. The
knowledge of the perpendicular intersection of the dominant lines la and lb is
the only constraint we can impose, as we have no further knowledge about other
angles or length ratios in the image. Therefore the affine part of the rectification
process can only restore angles but not length ratios. As shown in [109], α and
β lie on the circle with center

(cα, cβ) =
(
a+ b

2 , 0
)

and radius r = |(a− b)| (3.4)

where a = −la2/la1 and b = −lb2/lb1. If the image did not contain any affine
distortions, the parameters would have the value (0, 1)T , so we choose the closest
point on the circle to that point for the correction.

Finally the image gets rotated by the rotation matrix R to align the dominant
lines with the axes, scaled by s and translated by t:
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A =
(

sR t
0T 1

)
(3.5)

3.5 Facade splitting

Urban environments often consist of continuous building blocks with little or
no space between individual buildings. Additionally, each building in the block
may have a different architectural style. Therefore, the style recognition system
needs to be able to separate different facades in order to properly classify them.
As man-made structures are usually characterized by strong horizontal and
vertical lines, we choose to exploit them as the main cue for building separation.
We assume that each pair of neighboring facades are separable with a vertical
line. Similarly to Xiao et al. [207] we use the following heuristics:

1. Horizontal line segments on the building usually span only one facade.

2. Vertical lines which intersect a large number of horizontal line segments
have less chance of being a valid facade separator.

3.5.1 Line segment detection and grouping

After the rectification step, the vertical lines in the image coincide with the
direction of gravity. First, we use a line segment detector [72] to find salient
edges in the image. The obtained line segments are grouped in three clusters.
The first cluster contains horizontal line segments (with a tolerance of ±10
degrees in orientation). Similarly, the second contains vertical line segments,
while the third contains all other detected line segments. The last cluster will
typically have a smaller number of elements, due to the predominance of two
perpendicular orientations in urban scenery.

3.5.2 Vertical line sweeping

Next, we sweep a vertical line over the image. At each position of the line, we
calculate two values: support and penalty.

Support is based on the number of vertical line segments in the proximity of the
sweeping line. Every vertical line segment contributes a weight proportional to
its length: longer vertical line segments provide more support for the sweeping
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Figure 3.3: Facade splitting heuristic.

line. The support from neighboring line segments is reduced linearly with the
distance to the sweeping line.

Penalty is calculated through the number of horizontal lines that the sweeping
line crosses. Every horizontal line segment is weighted with its length: the
longer the crossed segment is, the more penalty it generates. Relative position of
the crossing point to the center of the horizontal line segment is also evaluated.
Sweeping lines that cross horizontal segments near the edges will receive less
penalty than those who cut the segments through the middle.

The result of the line sweeping process are two vectors of the same size, equal
to the image width: support vector and penalty vector. We want to find the
positions of the vertical line which correspond to local minima in the penalty
vector and local maxima in the support vector. In order to calculate this, we
first use the penalty vector to threshold the support vector. All of the line
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positions which have more than 3% of the maximum penalty value are discarded.
Then, positions which have less then 20% of the maximum support value are
eliminated as well. We set the appropriate values in the support vector to
zero. Finally, we perform local non-maxima suppression on the support vector
through the use of a sliding window (9% of the image width). The resulting local
maxima then coincide with the desired separator positions. We use these values
to cut the building block into individual facades. The process of estimating
facade separators from line segments is illustrated in Fig. 3.3.

3.5.3 Results

We test our facade splitting algorithm on a dataset consisting of 178 facade
images from Brussels. We achieve a recall of 77% of the facade separators, with
29.4% false discovery rate. The cases where system failed to detect a boundary
between facades were generally buildings which had strong horizontal features
on the splitting lines. Highly protruding eaves from the neighboring roofs and
shops with awnings which span multiple facades are typical examples. False
positives generally appear on background buildings and non-planar facades.

3.6 Style classification

The style classification is an important step in order to select an appropriate
grammar for the given building. To differentiate between the different styles,
namely “Flemish renaissance”, “Haussmann”, “Neoclassical” and “Unknown”,
we got convincing results using the Naive-Bayes Nearest-Neighbor (NBNN)
classifier proposed by Boiman et al. [16]. Despite its simplicity, it has many
advantages. This non-parametric classifier does not need time consuming offline
learning and it can handle a huge amount of classes by design. This means that
new styles can easily be added. Furthermore it avoids overfitting, which is a
serious issue for learning-based approaches.

3.6.1 NBNN algorithm

Algorithm 1 NBNN Image Classification
1: Compute descriptors d1, . . . , dn of the query image Q.
2: ∀di∀C compute NN of di in C: NNC(di).
3: Ĉ = arg minC

∑n

i=1 ||di−NNC(di)||2.
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Style Haussman Neoclassical Renaissance Unknown
Haussman 98 0 0 2
Neoclassical 2 76 0 22
Renaissance 0 0 59 41
Unknown 3 0.5 0.5 96

Table 3.2: Confusion matrix for the architectural style classification approach,
using SIFT features. The value in row i and column j represents the percentage
of cases when class i was labeled as class j.

First we calculate SIFT [112] and SSIM [152] descriptors for our training images
and sort them into the different classes. Then, for every descriptor di of the
query image the nearest neighbor distances to each class are approximated using
the FLANN library [122]. The sum over the Euclidean distances of each query
descriptor di denotes the image-to-class distance. The class with the smallest
distance is chosen as the winner class Ĉ. The NBNN image classification
approach [16] is summarized in Algorithm 1.

3.6.2 Results

Our dataset contains 949 images: 318 background facades (i.e. facades belonging
to none of the trained styles), 286 images for Neoclassical, 180 for Haussmann and
165 for Flemish Renaissance. We have taken these images ourselves, except for
the Haussmannian style images that come from the Ecole Centrale Paris Facades
Database [178]. Table 3.2 shows the confusion matrix after cross-validation for
the SIFT descriptor which was performing best throughout our experiments.
While the Haussmannian style is clearly separated from other classes, many
buildings of the Renaissance type are classified as “Unknown”. While we have
the least number of images for the Renaissance style, our definition for the
class is very loose, resulting in a great diversity of the facades of that class.
The mean accuracy for the SIFT features was 84%, while for the self similarity
descriptor (SSIM) it reached only 78%. Fig. 3.4 shows the regions of the SIFT
interest points labeled with different colors. Each color indicates the style to
which the given feature had the minimum distance The features that respond
to each style mostly appear on architectural elements typical for that style, e.g.
features that appear on the capitals of columns in a neoclassical building.
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Figure 3.4: Style classification: a) Neoclassical style (distinguishing features in
red), b) Haussmannian style (features in blue), c) Renaissance style (features in
purple) and d) Unknown style (features in green)
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3.7 Conclusion

In this chapter we presented a system for automatic architectural style
recognition. The output from this system can directly be used to initialize an
inverse procedural modeling reconstruction.

In case the system doesn’t recognize the style, the inverse procedural modeling
system can try several possibilities or use default values. However, it comes
with the cost of a more complicated optimization problem.

Furthermore, knowing the style of a building implies we know the kind of
elements to look for during the reconstruction and their typical appearances.
Moreover, the procedural reconstruction is then able to select accordingly the
corresponding typical 3D models (or even textures) of the architectural elements
to be used for rendering.

A possible extension of the proposed approach is to include feedback from a
procedural modeling system, in order to perform online learning. For example,
if the modeling is successful, the style database can be augmented with the
current building. If not, we can select another style and retry the reconstruction.



Chapter 4

Procedural 3D Building
Reconstruction using Shape
Grammars and Detectors

In this chapter1 , we propose a novel grammar-driven approach for reconstruction
of buildings and landmarks. Our proposed approach complements Structure-
from-Motion and image-based analysis with a ‘reverse’ procedural modeling
strategy. We reconstruct complete buildings as procedural models using shape
grammars. In this chapter, we will assume that the procedural grammar is
known; if this is not the case, we can run the approach from the previous chapter
to select the appropriate grammar. The process can be seen as instantiating
the grammar by determining the correct grammar parameters. As a case
study, we have chosen the reconstruction of Greek Doric temples. This process
significantly differs from single facade modeling due to the immediate need for
3D reconstruction.

1This chapter is based on the joint work with Markus Mathias, Julien Weissenberg and
Luc Van Gool, published in 3DIMPVT 2011 [117]. While all parts of this work are a result
of joint work and discussion, the first author Markus Mathias was mainly working with
asset detectors, 3D reconstruction and the vision module. The main involvement of Anđelo
Martinović was in the development of the grammar interpreter.

41
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(a) Sparse point cloud (b) Pruned detections in 3D

(c) One of the input images (d) Our final reconstruction

Figure 4.1: Reconstruction of the Second Temple of Hera in Paestum, Italy

4.1 Introduction

Over the last years, the efficient creation of 3D models of single landmarks
up to whole cities has received increasing interest, whereby landmarks play
a particularly important role. Structure-from-Motion (SfM) approaches are
popular methods to build such models from image sequences. They don’t require
expensive hardware and the images can be re-used for model texturing. Yet,
SfM has problems which have proven to be difficult to solve [32]. It is doubtful
whether further refinements to the typical SfM pipelines, i.e. better bottom-up
processing, can overcome these issues. Therefore, it is worth trying to exploit
prior knowledge about the scene.

We propose to create 3D models of buildings, by combining SfM, building element
(‘asset’) detection, and inverse procedural modeling. The latter incorporates a
shape grammar interpreter which drives the entire reconstruction process. The
usage of asset detectors avoids fragile image or mesh segmentation processes
and leverages recent progress in object class recognition. As grammars are
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specific for a particular building style, like our Doric temples illustration, they
need to be pre-selected correctly. As mentioned earlier, this is not critical, as
one can use an automatic approach such as the one described in Chapter 3 or
automatically mine images and information from Wikipedia pages of landmark
buildings [140]. The Wikipedia pages typically specify the building style. This is
also the case for the examples shown in this chapter. It is also important to note
that the mined images often do not allow for a complete SfM reconstruction.

4.2 Related work

In the field of 3D architecture modeling, numerous approaches are available. In
the following we give a short overview of representative works.

Cornelis et al. [32] present an approach for stereo-based, real-time, but simplified
3D scene modeling. Gallup et al. [58] has demonstrated a way to also handle
non-planar surfaces. An approach for automatic partitioning of buildings into
individual facades has been described by Zhao et al. [216], while Xiao et al. [207]
use the concept of facades to reconstruct street-side models of buildings.

Probabilistic approaches have gained ground since the influential work of Dick
et al. [39]. They use a model-based, Bayesian approach with Markov Chain
Monte Carlo (MCMC) optimization. Alegre and Dellaert [3] use a stochastic
context-free grammar and MCMC methods to deduce semantic information from
building facades, relying on color constancy and rectangular shapes of facade
elements. Ripperda and Brenner [145] use reversible jump MCMC methods for
facade reconstruction, together with a formal grammar for facade description.
Teboul et al. [182] use a coarse probabilistic interpretation of the facade to
match the instantiated grammar model to the observed image. In order to
find the grammar parameters, they kick-start the process with a pixel-wise
segmentation and labeling step and then employ an algorithm for random-walk
exploration of the grammar space.

We propose an approach that combines the robustness of a top-down grammar-
based approach with the flexibility of the bottom-up image-based approach. Our
main contributions are: (1) The reconstruction process is guided by the grammar.
Instead of the developers having style-specific guidelines in mind when producing
the system, a grammar interpreter tool renders the process more generic. It
is the grammar that decides on what to do when. Moreover, structures that
may not even be visible can be filled in. (2) Rather than relying on fragile
segmentation processes to kick-start the semantic analysis, the grammar chooses
the matching available detectors to assign initial semantic labels to image
regions. (3) The system learns from its previous results. For instance, asset
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Figure 4.2: The proposed grammar-based reconstruction system.

detectors self-improve by using earlier results as additional training material.
This also allows us to start with rather generic asset detectors, which have not
been developed uniquely for the targeted style.

4.3 Main system components

Our grammar-based reconstruction system is composed of four main components:

• Grammar interpreter: Analyzes the input shape grammar, extracts
semantic information and leads the reconstruction process.

• 3D reconstruction module: Generates a 3D point cloud from the input
images through uncalibrated SfM.

• Asset detectors: Extracts bounding boxes of ‘assets’ (building
substructures) in the images.

• Vision module: Improves the detections by using 3D and semantic
information from the grammar.

Note to reader: we use the term ‘shape symbol’ to refer to a string or name in
the grammar, which refers to a class of shapes. In case a detector is available
for that class of shapes, that type of shape is referred to as an ‘asset’. Windows,
doors, or pillar shafts are examples of assets in our system.

The system requires the following inputs: (1) a set of images of the building
that is the target of reconstruction; (2) a database of asset detectors and (3) a
style grammar which can express the target building. The above components
are generic and have each been elaborated to the point where they support
the Doric temple showcase. For instance, we have trained detectors of capitals
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and pillar shafts, but would not have detectors for important elements in other
styles yet (except for very general classes like windows and doors).

Fig. 4.2 shows how the parts of the system interact. First (1), the
grammar interpreter initializes the vision module with a list of shape symbols
automatically extracted from the grammar. They are then compared with the
list of symbols that represent trained asset detectors from our database. The
matching symbols (assets) are identified, reported to the grammar interpreter
(2) and the detection (Sec. 4.3.2) process is initialized for those assets resulting
in detection bounding boxes in all input images (3-4).

The image are also fed into the 3D reconstruction module ARC3D [196] to
obtain a sparse 3D point cloud and the camera parameters from the building
(5-6). For the matched symbols (detectable assets) the grammar interpreter
parses the grammar to find structural information like spatial configuration or
repetitions of these symbols (step 7).

The vision module (Sec. 4.3.4) uses a plane fitting algorithm to extract the
dominant planes of the building. The detections from all images are projected
into 3D and re-weighted based on consensus in 3D and the structural information.
The output of this vision module are the sizes of the detected assets and their
color, the footprint for the building and the parameters for the structural
configurations (step 8). Then the building can be instantiated by the grammar
interpreter by directly using the extracted parameters.

4.3.1 Grammar Interpreter

In this chapter we use the CGA Shape grammar for the description of our
procedural models. Please refer to Sec. 2.1.4 for more details about the grammar
definition.

Automatic Extraction of Semantic Information

In order to get the semantics of the building from a given shape grammar,
we automatically construct a tree-like structure. Its nodes represent shapes,
split, component split and repeat operations, capturing the structure of the
building. The process begins with the extraction of shape symbols, and their
classification as terminal or non-terminal shape symbols. In the next step, the
rule set is analyzed, creating the tree structure. The interpreter also extracts
the attributes from the grammar and assigns them to the appropriate nodes in
the tree. An example grammar and its tree structure are shown in Fig. 4.3.
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Figure 4.3: An example CGA grammar is shown on the left. The resulting
shape tree is in the middle, and the rendered model with the default values on
the right.

After the interpreter has analyzed the input grammar, the extracted symbols
are fed to the vision module, which then returns the list of detectable assets.
The assets constrain the grammar interpreter to extract only structure and
composition information pertaining to assets. For each asset, it queries the
semantic shape tree to retrieve the number and direction of repeat configurations
the shape symbol appears in. This information is then sent to the vision module
to re-weight the existing detections (see Sec. 4.3.4).

In the next step, we perform queries on all pairs of assets, determining their
possible mutual composition. Assets typically correspond to multiple shapes in
the shape hierarchy. Therefore, we check if all of the instances of one asset are
in the same configuration with instances of a second asset. The configurations
we can extract from the shape tree are:

• One shape is part of another shape

• One shape is on top/left/bottom/right of the other, relative to parent
scope

For the Doric temple example, the system notices that capitals are on top of
pillar shafts, and such coupling information is passed on to the vision module.
Similarly, it would notice that windows are parts of facades, but not always on
top of doors.

4.3.2 Asset detector

An important part of the strategy is to keep available a large set of asset
detectors. We have used the Deformable Parts Model (DPM) by Felzenszwalb
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(a) General detector (b) Specialized detector

Figure 4.4: Comparison of the general detector and the retrained specialized
one.

et al. [46], trained on a few hundred hand-labeled examples for each asset.
The detectors output bounding boxes of image regions where the asset was
found, together with a score. Of course, there are the usual false positives and
false negatives. The exploitation of the grammar helps the vision module in
re-weighting or pruning those or just reducing their weight.

Another important aspect of our system is its ability to improve the detectors
based on its previous ‘experience’. For instance, the capital and shaft detectors
that are activated to handle the Doric temples in this chapter have been trained
on a diverse set of examples, including Ionic and Corinthian style in addition
to Doric ones. As the system arrives at high confidence detections during the
re-weighting process, it can then collect specific training examples to specialize
the current general detector to one better suited for Doric temples as shown in
the example Fig. 4.4. This online learning increases the chances of success to
reconstruct the next Doric temple.

4.3.3 3D reconstruction module

For the creation of a 3D point cloud from the images of a building, we use the
publicly available, online web service ARC3D [196]. This system employs a
self-calibrating SfM approach, automatically estimating the camera positions
and calibrations. The meshed surfaces provided by ARC3D are not used, as
its 3D information is only needed to support our system and not to deliver
complete parts of the model. One can imagine that one might eventually want
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to use part of the ARC3D meshes for ornamental structures, if they were not
available as assets.

4.3.4 Vision module

While the grammar interpreter guides the reconstruction process, the vision
module gathers the information from the 3D data, the detectors and is
responsible for substantiating the semantic information extracted from the
grammar. It consists of four main components.

1. The plane estimator extracts the dominant planes from the sparse 3D
point cloud.

2. The 3D reasoning module is responsible for projecting the 2D object
bounding boxes from the images into 3D and to estimate the assets sizes.

3. The spatial configuration module re-weighs the matching assets by
using detected relations between different assets.

4. Eventually, detections for assets that appear in a repeat rule of the
grammar are enhanced by similarity detection.

The modules for 3D reasoning, spatial configuration and similarity detection
implement a re-weighting scheme ( wi3D, wisp and wisim) of the detection score
Sidet of the i-th detection. The final score Sifinal is calcualted as:

Sifinal = Sidet · wi3D · wisp · wisim (4.1)

Plane estimator

As the basic algorithm to extract facades from the point cloud we apply
RANSAC [49]. To improve the quality of the detected planes we reduce the
point cloud to points that project into detection bounding boxes in the images.
This leads to planes intersecting the assets of interest. We set the inlier threshold
proportional to the size of the point cloud. We stop extracting planes when
the number of inliers of the final estimate is less than a given fraction of the
total number of points. Furthermore, as soon as we have more than two planes
detected, we calculate the gravity vector and the ground plane through the
vector product of the plane normals, under the assumption of vertical planes.
The footprint of the temple is extracted from the intersection of the ground
plane with the facade planes. Fig. 4.5 illustrates the process of finding the
planes.
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Figure 4.5: Plane estimation process: The first image shows the entire point
cloud, then the planes are estimated in the reduced point cloud and shown in
the cleaned complete point cloud.

3D reasoning module

The bounding boxes of detections from all views are back-projected to the planes
detected in the sparse 3D model. Detections which overlap on the planes are
then clustered. The clusters Cj are found in a greedy fashion. The detections
are first sorted by their score. Starting from the best scoring detection as a
cluster center, all overlapping detections are added to that cluster. A detection
that does not overlap any previous bounding box defines a new cluster. The
weight w3D accounts for the size of the cluster and the ‘rectangularity’ of the
detection. The latter is defined by the ratio Ap/Abr. The area of the polygon
Ap is obtained by back-projecting an image detection bounding box into the
3D plane, while Abr is defined as the area of the corresponding polygon’s
minimum bounding rectangle. This rectangularity ratio decreases the influence
of detections that come from cameras with an oblique angle to the plane, as
these result in stretched polygons in 3D. Thus, every detection is assigned to
a cluster Cj, represented by the cluster center (the detection with the highest
score in the cluster). The size of the cluster |Cj| is down-weighted with the
number of cameras nseen in which the cluster centre is visible.

wi3D = Ap

Abr
· |Cj|
nseen

(4.2)

After thresholding by detection scores, cluster size and rectangularity, the
remaining detections belonging to each cluster are used to find the spatial
extent of the detected assets (see Fig. 4.6). The intersection area of these
detections is orthogonally projected to the x and y axes (the x axis being
parallel to the plane, and y axis being aligned with the gravity vector) to find
the asset’s dimensions (red and green arrow).
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(a) Detections (b) Intersection and size estimation

Figure 4.6: Determining the assets size: the red and green arrows indicate the
estimated height and width respectively.

Module for spatial configurations

This module uses semantic information originating from the grammar interpreter.
The re-weighting wisp is based on the spatial configurations of detections. The
grammar interpreter informs the vision module about the possible spatial
relations (c1 . . . ck) between two elements. For a pair of elements a and b there
are four relations possible, corresponding to the directions of split operations in
the grammar: ‘a left of b’, ‘a right of b’, ‘a above b’, and ‘a under b’. If one of
these configurations is reported by the grammar interpreter, the vision module
verifies them in the 3D plane.

wisp = 1
k

k∑
t=1

wi,tsp (4.3)

wi,tsp =
{
α if detection fits ct
1 otherwise

, t ∈ (1 . . . k)
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Figure 4.7: Similarity voting space for a single detection (red rectangle).

The score of every detection that appears in a given relation is boosted by a
constant multiplier α (in our experiments α = 1.1).

Similarity detection

When the grammar interpreter informs the vision module about an asset
appearing in a repeat rule, it expects as an answer the repeat distance. The
similarity detection not only extracts this parameter but calculates a new weight
wisim for the detections of the repeat rule. For detections with no information
about repetition wisim is set to 1. The presence of a repeat rule implies directly
that the asset included in that rule will appear several times along a given axis.
This module searches for this periodicity, and boosts detection performance in
three ways. First, assets that have not been detected so far can be inferred by
similarity to a detected one. Second, as the repeat is defined along an axis, the
locations of repeated assets are constrained to a line. Finding these similarity
lines determines wisim. Third, the parameter for the repeat distance is found as
a byproduct of the repetition detection.

Fig. 4.7 shows the structures deemed similar for the detection marked with a
red rectangle.

Similarity voting For every image we create a global voting space, i.e. a 2D
accumulator. The similarity voting is based on local image features around
detected interest points. Each interest point Ft is described with a triplet
(pt, st,dt), denoting its position, scale and the feature descriptor. The algorithm
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iterates over all asset detections in the image and uses an ISM-like voting
scheme [108] to find similar detections.

For a single detection, we consider the set of all interest points inside its
bounding box. Each of these points is assigned a vote vector vi from its position
to the center of the box. Let F denote all interest points not covered by any
detection. For each interest point Fj ∈ F we calculate a vote vector vj by
finding the nearest neighbor feature vector as follows:

Fk = arg min
Fi∈F

(||di − dj ||) (4.4)

vj = sj
sk
· vk (4.5)

Every interest point Fj casts a vote by adding a Gaussian kernel with standard
deviation σ centered at pj + vj to the accumulator. The process is repeated for
all detections of one type in the image.

In our implementation, we use Hessian Affine interest points [121], and SIFT
feature descriptors [112]. The value of σ is set based on the mean detection
bounding box size.

Vanishing Line Extraction Similarity lines are found independently in each
image. The best similarity lines in each image are found by fitting a line through
the maxima of its voting space using RANSAC [49]. Maxima of the voting
space that lie on a similarity line but do not correspond to any detection in the
image are used to reinforce new detection hypotheses.

The number of similarity lines detected in an image depends on the total number
of planes and the given grammar. In the grammar, a split operation immediately
after a repeat operation is a cue to search for more similarity lines per plane.
An example in Doric temples is the colonnade: a repetition of columns, each
split into shaft and capital assets.

Re-weighting Factor Calculation The similarity lines found in all images are
back-projected onto the planes of the model. The back-projection lines all
vote in a Hough space to find the globally best similarity lines. Detections not
corresponding to these lines are considered as outliers and are re-weighted based
on their distance d to the lines.

wisim = 2−( 4d
∆ )2

(4.6)
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The value for ∆ is the mean detection bounding box extent along the axis
perpendicular to the similarity line. For example, a detection centered exactly
on the similarity line receives a weight of 1, while a detection offset by a quarter
of mean bounding box size (d = ∆/4) is weighted with 0.5.

Repeat Distance The estimated distance between maxima in the voting space
is robust to small deviations of the detection position. Each detection that is not
perfectly centered at the detected asset creates a voting space with the maxima
shifted by the same amount from the ideal position. This results in a stable
repeat distance. For a fronto-parallel view, an extra voting space is generated
tracking these distances for all detections in all images. The maximum of that
voting space is the parameter used as the repeat distance, or the repetition
period. By using frontal views, we reduce the effect of errors in the plane
detection process.

4.4 Grammar attribute estimation

At the end of the recognition stage, we have obtained the estimated values
of asset sizes and the spacing of assets in repeat configurations. Additionally,
we get the estimated size of the building footprint. The grammar interpreter
then translates these parameters into the appropriate grammar attributes. In a
typical scenario, the grammar will have additional attributes that cannot be
estimated using the asset detectors alone (e.g. ornaments). For these attributes
we use the default values present in the grammar. This approach enables us to
“give an educated guess” for objects not visible in the images, but which have
to be there due to the structural constraints imposed by the grammar.

4.5 Case Study - Doric Temples

Classical temples conform to strict architectural rules, which have been
thoroughly analyzed in literature [171]. These rules have been converted into
a CGA shape grammar representation. To demonstrate the usability of our
method on real-world examples, we collected images from three different Greek
Doric temples. The first is the Parthenon in Nashville, Tennessee, a full-scale
replica of the original Parthenon in Athens. The remaining two reconstruction
targets are the well-preserved remains of two temples in the ancient Greek city
of Poseidonia (later renamed by Romans to Paestum), in today’s province of
Campania, Italy. The two temples we consider are the Temple of Athena (also
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known as Temple of Ceres) and the Second Temple of Hera (also known as
Temple of Neptune, or Temple of Poseidon). The reconstruction results are
summarized in this section. Fig. 4.1 illustrates several steps of the reconstruction
process for the Second Temple of Hera.

4.5.1 Asset Detectors

To train our asset detectors we use the publicly available implementation of
Felzenszwalb’s detector [46]. To cope with the higher variability in different types
of capitals we have trained this detector as a two-component detector, whereas
the shaft detector consists of only one component. For our first detector, we
hand-labeled a few temple images of different styles, resulting in 189 annotations
for capitals and 204 for shafts.

The reconstruction of the Second Temple of Hera resulted in 188 + 124
(capitals+shaft) newly gathered samples that we added to the training set,
now specialized for Greek Doric temples. Keeping the false positive rate fixed at
2.2% for capitals and 5.4% for shafts we increased our detection rate by 7.31%
and 14.89%, respectively.

4.5.2 Temple Grammar

A very simplified version of a grammar that describes classical temples is
described in this section. We focus on the colonnade (the sequence of columns)
as this is the most relevant part which contains our detectable assets.

Colonnade --> split(x){Column | {columnSpacing:Column }* | Column}

Column --> split(y){shaftHeight:Shaft | capitalHeight:Capital}

Shaft --> i(shaftAsset)

Capital --> i(capitalAsset)

The colonnade is first split in the x direction into three parts: one column on
each side, and a repetition of columns in the center. The side columns are
handled separately resulting in a different spacing between the repeated columns
and the the spacing to the left and right column. This fact is directly captured
in the grammar rules, but cannot easily be inferred from the images alone. A
column is further divided into capital and shaft. Due to this rule, the grammar
interpreter informs the vision module about the relation “capital on top of
shaft”. The insert rule replaces the 3D volume by an asset from the database.
As seen in the excerpt above, the parameters for column spacing, capital height
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Reconstruction Original Ratio

temple width 24.26 24.26 1.0
temple length 58.51 59.98 0.98
shaft width 2.13 2.11 1.01
column height 9.28 8.88 1.04
capital width 2.56* 2.72 0.94
capital height 1.37* 1.04 1.32
inter-column distance 4.45 4.48 0.99

Table 4.1: Size comparison for the Second Temple of Hera.

and shaft height appear directly in these rules. The remaining parameters,
namely the column width, shaft width and temple color are extracted from the
full derivation tree. The footprint size is estimated from the point cloud and
not directly encoded in the grammar. Further parameters are either dependent
on the estimated attributes or set to default values (e.g. the roof angle).

4.5.3 Results

Fig. 4.8 shows instantiations of the Parthenon replica in Nashville and the
Temple of Athena, respectively. Properties such as the number of columns can
easily be found from the detections. These are not grammar attributes but can
be inferred through the instantiation process. In Table 4.1, we compare the
dimensions of Second Temple of Hera with our estimations. All parameters are
scaled to the size of the temple width. Sizes measured in the images are marked
(*), while the groundtruth sizes are taken from the Perseus Digital Library [191].
Column height is the size of capital height + shaft height. The large error for
the capital height can be explained by the fact that the pictures were taken
from the ground. This results in the capitals appearing taller than they are in
reality.

4.6 Conclusion

This chapter has introduced a novel way of 3D building reconstruction
using shape grammars, where the grammar drives the reconstruction process.
Additionally, object detectors are demonstrated to provide a good starting point
for estimation of the grammar parameters. Furthermore, the system improves
itself by automatically specializing the applied detectors. The validity of our
approach is shown on a case study of classical Doric temples.
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Figure 4.8: Procedural reconstructions of the Parthenon replica in Nashville
(top row) and the Temple of Athena (bottom row).

Possible extensions of the presented approach include extending the supported
set of CGA rules from which information can be extracted. Furthermore, a
matching phase between the estimated model and the original images can be
added to verify and fine-tune the estimations of the parameters. This matching
can be used to include extra shapes via ARC3D meshes (like ornamentation)
and to add effects of destruction and erosion as parts to be displaced or taken
off the original model.
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Chapter 5

A Three-Layered Approach to
Facade Parsing

In this chapter1 , we focus on the problem of determining the structure of
building facades when a pre-defined procedural shape grammar is not available.
We propose a novel approach for semantic segmentation which consists of three
distinct layers, representing different levels of abstraction in facade images:
segments, objects and architectural elements. In the first layer, the facade is
segmented into regions, each of which is classified as one of the semantic labels,
such as windows, doors, balconies etc. We evaluate different state-of-the-art
segmentation and classification strategies to obtain the initial probabilistic
semantic labeling. In the second layer, we investigate the performance of
different object detectors and show the benefit of using such detectors to
improve our initial labeling. The generic approaches of the first two layers
are then specialized for the task of facade labeling in the third layer. There,
we incorporate additional meta-knowledge in the form of weak architectural
principles, which enforces architectural plausibility and consistency in the final
reconstruction. Rigorous tests performed on two existing datasets of building
facades demonstrate that the proposed system outperforms state of the art, even
when using outputs from lower layers of the pipeline. Finally, we demonstrate
how the output of the highest layer can be used to create a procedural building
reconstruction.

1This chapter is based on the joint work with Markus Mathias and Luc Van Gool, submitted
to IJCV. Anđelo Martinović and Markus Mathias share first authorship. Markus Mathias
focused mainly on the object detectors and implementation of weak architectural principles.
Anđelo Martinović worked on the semantic labeling in the first layer, CRF formulation and
learning in the second layer, and GA optimization in the third layer.

58
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Figure 5.1: The three-layered approach takes a cropped and rectified facade
image as input (left). The result of processing is a labeled output image
(middle), where each color corresponds to one semantic class. From this labeling
we produce a textured procedural model (right).

5.1 Introduction

Accurate reconstruction of building facades plays an important role in 3D city
modeling. Current models built by simple plane fitting and texturing are a
good starting point, but provide inadequate 3D visual perception. For instance,
artifacts in the 3D shape often show up during unrestricted user movement
around the model. Due to diversity of appearance, hierarchical structure of
scene objects and the lack of implementing long-range interactions, it appears
impossible that improved, bottom-up depth extraction and primitive fitting
alone can avoid such artifacts from sneaking in. Furthermore, conventional
bottom-up models based on structure from motion lack any semantic knowledge
about the scene. Yet, adding a good understanding of what needs to be modeled
is a strong cue, not only to improve the visual and 3D quality of the model, but
also to substantially widen its usage (e.g. for animation where people should
walk through doors, not walls, when wanting to know the average number of
floors that the buildings in a street have, etc.). Fig. 5.1 shows an example of
our modeling pipeline, that builds on the inclusion of semantic aspects.

As mentioned at the beginning of the thesis, procedural modeling provides an
effective way to create detailed and realistic 3D building models that do come
with all the semantic labels required. Yet, the solutions that create procedural
models for existing buildings from images or other data sources typically start
from a preprocessed version of the raw data. The semantic segmentation of
facades - also referred to as facade parsing - is a good example. This said, such
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Figure 5.2: The proposed three-layered approach to facade parsing.

accurate labeling of facade elements (such as windows, doors or balconies) is a
difficult problem in its own right, given the great diversity of buildings and the
interference of factors like shadows, occlusions and reflections in the images. It is
this facade parsing that this chapter focuses on. Furthermore, a shape grammar
specific to the desired style is not easy to come by. An expert in that style needs
to sit down with a person versed in the creation of the grammars. Therefore,
our approach also avoids the need for such a style-specific grammar and uses
generic architectural principles instead. This stands in contrast to most earlier
inverse procedural modeling work (see e.g. [181]). Assuming that the input
facades are of a certain architectural style helps to keep the dimensionality of
the search space a bit smaller. In the case of Teboul et al. [181], this is e.g. the
Haussmannian style, ubiquitous in central Paris. Strong prior knowledge about
this style is imbued in the Haussmann-specific procedural facade grammar.

This chapter extends our previous work [113], which at the time achieved top
results on the task of facade parsing, even without using any style-specific prior
knowledge. Still, if style information is available, it can be incorporated into the
system through the usage of extra “architectural principles”. In contrast to full
procedural grammars, these principles do not encode the entire facade structure
and can be formulated explicitly by laymen. Moreover, we demonstrate how
procedural rules and thus simple shape grammars can be derived from facade
labeling, rather than vice-versa. By avoiding the need for a style prior, we
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circumvent the manual construction of style-specific grammars.

Our approach to facade parsing is performed in three layers, representing
different levels of abstraction in facade images: segments, objects and
architectural elements. An overview is given in Fig. 5.2.

Bottom layer. Initially, the facade is segmented into superpixels, i.e. image
regions. Visual features are extracted from the corresponding regions, and
subsequently used for classification. Each region is assigned a probability
distribution over semantic classes. In this layer, we pay particular attention
to the evaluation of different segmentation algorithms and classifiers on the
task of semantic segmentation of facades, as well as the effect of segmentation
coarseness on the classification performance.

Middle layer. The second layer of our approach introduces detectors for
objects found in urban scenes, such as windows and doors. The classifier output
from the bottom layer is combined with the object detector responses (see
Fig. 5.2) and results in our improved middle layer output. The combination
of detections and the labeling from the bottom layer is achieved through a 2D
conditional random field (CRF) defined over the image, which can be efficiently
solved with graph cuts. We investigate the performance of different object
detectors and show the benefit of using such detectors to improve our initial
labeling.

Top layer. The generic approaches in the first two layers are complemented
with considerations dedicated to the task of facade labeling. In the top layer,
we incorporate additional meta-knowledge in the form of weak architectural
principles. In contrast to shape grammar rules, these principles are easily
observable in the images. For instance, the principle of vertical window alignment
is often an implicit consequence of grammar rules, never made explicit in
any of them. Also, we use these architectural concepts as guidelines, not as
hard constraints. Therefore, we are also able to model irregular facades, as
demonstrated on the eTRIMS dataset that contains different facade styles. The
architectural principles are designed such that each principle either proposes new
facade elements, re-arranges their position, or evaluates the current configuration
of elements. Finally, we pose the search for the optimal facade labeling as a
sampling-based approach. Although the overall pixel accuracy of the semantic
segmentation is not greatly influenced by the top layer, we obtain image labelings
that are visually more pleasing, with clearly defined object boundaries and
structures. These in turn form a stronger basis for further processing, e.g. for
deriving style-specific procedural grammars.
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While the overall structure of our system is similar to that of Martinović
et al. [113], each layer has been upgraded. In the bottom layer, instead of
using a fixed combination of Mean-shift [31] segmentation and the Recursive
Neural Network (RNN) classifier [164], we evaluate various segmentation and
classification algorithms. In the middle layer, we learn a prior on element
locations and calculate the probabilistic detector output in a more robust way.
Furthermore, we learn the CRF parameters with structured SVMs [190]. In the
top layer, we propose a coupled subsampling-and-optimization technique in a
generic framework that allows for addition of new principles.

The main contributions of this chapter are as follows:

1. A new approach for facade parsing, combining low-level information
from the semantic segmentation, middle-level detector information about
objects in the facade, as well as top-level architectural knowledge;

2. A rigorous evaluation on two different datasets which shows that we
outperform the state-of-the-art in facade parsing;

3. The concept of weak architectural principles, which introduce the high-level
knowledge needed for ensuring architectural plausibility.

5.2 Related Work

This section concisely describes the relation between the proposed work and
prior art. We have organized this overview into several main topics.

Scene parsing. There exists a significant body of work in this field. Some
approaches attempt to estimate labels for each pixel in the image [158, 54].
Others depend on an initial segmentation of the image into super-pixels.
Visual features are extracted from the corresponding patches or regions, and
subsequently used for classification. In our work, we opt for the region-
based approach in the first layer, as state-of-the-art results in semantic scene
segmentation are achieved by similar approaches.

These approaches ensure labeling consistency by incorporating region context
in various ways: estimating geometric labels [66, 185], using multiple over-
segmentations [100], learning segmentation trees [164] or label transfer combined
with a simple MRF [111, 185]. However, facade structures are difficult to analyse
with solely region-based approaches, as the initial segmentation boundaries
might not correspond to actual object boundaries in the image. Our work
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puts more emphasis on the combination of the region-based approach with
higher-level information, such as object detectors and architectural knowledge.

Combining semantic segmentation with object detectors. The effect of
positive reinforcement between semantic segmentation and object detection
approaches has been demonstrated in several works. Heitz and Koller [77] use
image regions as context for improved object detection. This is an orthogonal
approach to our work, as we use object detectors to improve the facade
labeling. Joint reasoning about pixel-wise labeling and object detectors in a
CRF framework was performed by Wojek and Schiele [201], while also capturing
temporal consistency for video sequences. However, the complexity of their CRF
requires slow approximate inference with loopy belief propagation. The work of
Ladicky et al. [102], later extended by Floros et al. [51], disregards the temporal
consistency, but in their CRF framework inference can be performed efficiently
via graph cuts. The second layer of our approach is similar to [102], but with
two key differences. Firstly, instead of using detector outputs as higher-order
potentials, we decompose them into unary potentials, which are learned based
on detector output on the training set. This enables us to solve a much simpler
CRF optimization problem. Note that the problem of inferring pixel-level cues
(or masks) from bounding boxes can also be tackled by using per-exemplar
detectors as in [184] if the objects exhibit high variability in appearance. The
second advantage of our approach is that we can efficiently learn the CRF
parameters on the validation set based on the structured SVM approach [190].
As shown by Szummer et al. [173], CRF parameter learning using graph cuts is
tractable, fast, and much more efficient than methods based on cross-validation,
especially for larger parameter vectors.

Urban reconstruction. For an extensive overview of the field, we refer the
reader to the survey of Musialski et al. [129]. Our main focus is the semantic
segmentation of isolated and rectified facades. These can be obtained from more
general street-side imagery by approaches [216, 199, 141], or by our proposed
approach in Chapter 3. Furthermore, we demonstrate that even in cluttered
scenes with occlusions such as vegetation or cars, our approach can semantically
segment the facades.

Xiao et al. [206, 207] target realistic visualization with a low level of semantic
encoding in the reconstruction. In their work, facades are represented with planes
or simple developable surfaces. On the other hand, many approaches employ
higher-order knowledge for building reconstruction. Probabilistic approaches
to building reconstruction started with the work of Dick et al. [39], where a
building is assumed to be a ‘lego’ set of parameterized primitives. The inference
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is performed using a Reversible Jump Markov Chain Monte Carlo (rjMCMC)
approach. However, an expert is needed to set the model parameters and prior
probabilities. In contrast, the free parameters of our system are learned from
validation data.

Certain approaches are based on priors on the facade layout. A grid-based layout
is a common assumption [93, 154, 208, 75]. The work of Müller et al. [126] also
assumes a certain degree of facade regularity, and fits procedural grammar rules
to the detected subdivision of the facade. Unlike the aforementioned methods,
our approach poses no grid constraints on the facade.

Grammar-based approaches are quite popular in the field [3, 145, 74]. They
allow the generation of very clean models and labeling results, demonstrated by
approaches where facade reconstruction is postulated as a problem of finding the
correct parameters of a pre-specified shape grammar. For example, Koutsourakis
et al. [95] fit a hierarchical tree grammar to a rectified facade image using an MRF
formulation. Teboul et al. [182, 161] extend this work by utilizing bottom-up
segmentation cues and a random walk exploration of grammar parameter space.
An improved search algorithm based on reinforcement learning is presented
in [180, 181]. Depth cues have also been used in the context of grammar-based
parsing [162], by transforming the problem into a multiobjective optimization,
solved with a genetic algorithm. As said earlier, the focus of this chapter is
the case when a predefined grammar is not available or not applicable for the
architectural style at hand.

Object detection has also been considered in grammar-based approaches. As a
reminder to the reader, in Chapter 4, we have shown how 3D reconstructions of
Greek Doric temples can be created using a specialized procedural grammar, 3D
Structure-from-Motion (SfM) point clouds, and object detectors. Several other
approaches use detector outputs to augment the bottom-up merit functions for
grammar-based facade parsing. Ok et al. [132] use a simple approach where the
merit of undetected classes is zeroed out in every detection. In a work similar to
our first two layers, Riemenschneider et al. [144] combine a pixel-wise classifier
with Hough forest detectors using a MRF framework. This labeling is then
used to create an irregular grid which is labeled by using a predefined grammar.
In contrast to this work, we utilize much stronger bottom-up classifiers and
detectors, without restricting the final output to a grid.

The benefit of relying on shape grammars is that they strongly restrict the
search space during parsing. Yet, the grammar may not be expressive enough
to cover the variance in real world data. Furthermore, an expert is needed to
write the grammars for the relevant styles. Human intervention is also required
to pre-select the grammar appropriate for each specific building. The latter
requirement can be mitigated by applying style classifiers that automatically
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recognize the building style from low-level image features, as shown in Chapter 3.
Still, using a style-specific grammar would imply that it needs to be available
beforehand, which at least for the moment is a limiting issue. Therefore, in
the earlier version of this work [113], we did not assume the existence of such
a predefined grammar. Other authors have also recognized the limitation of
relying on expert-written procedural grammars, e.g. [35], replacing them with
weaker, or learned priors. In fact, our guiding principle is to derive procedural
grammars based on automatically parsed facades, rather than vice-versa.

In summary, the current state-of-the-art in semantic facade parsing needs the
prior specification of a style-specific grammar. The goal of this chapter is to
show that an approach can be designed that performs facade parsing with
high accuracy without needing such a grammar, allowing us to deal with a
wider variety of buildings. Moreover, the traditional pipeline can be reversed:
we let the image parsing control the grammar inference, rather than simply
using a fixed grammar to control the process of image parsing. Selecting the
appropriate images for grammar induction can be automated by using style
classifiers (Chapter 3), which, as said, require far less human interaction than
the prior construction of entire grammars.

5.3 Datasets Description

Our facade parsing approach is evaluated on two datasets, the “Ecole Centrale
Paris Facades Database Benchmark 2011” [178] and the eTRIMS database [94].
The ECP database provides labels for multiple facade elements, while the
eTRIMS dataset also contains non-building classes, such as vegetation. Since
we are primarily interested in the accurate parsing of building facades, our main
focus will be on the ECP database. We additionally validate our approach on
eTRIMS and show that we outperform previous state-of-the-art results.

The ECP Database contains 104 annotated images of single rectified and
cropped facades in the Haussmannian style. The dataset has 7 different labels
Ψ = {window, wall, balcony, door, roof, sky, shop}. We use the new and more
precise set of annotations provided in [113]. Our evaluations are performed with
a 5-fold cross-validation on this dataset. For each fold, we use 60 images for
training, 20 for validation, and 20 for testing.

The eTRIMS Database provides accurate pixel-wise annotations and
contains 60 images. Unlike the ECP dataset, the images are not rectified
and the facades uncropped. We use the automatic rectification algorithm of
Liebowitz and Zisserman [109] as a preprocessing step. To allow for a fair
comparison to previously reported results, we ‘un-rectify’ our output prior to
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evaluation. The labels of this dataset Ψ ={building, car, door, pavement, road,
sky, vegetation, window} are quite different compared to the ECP dataset, as
there are several non-building classes. As in [210], we evaluate our algorithm
by performing a 5-fold cross-validation with random sub-sampling. However,
instead of using 40 images for training, we use only 30, leaving 10 images as a
validation set. 20 images are used for evaluation.

5.4 Bottom Layer: Initial Semantic Segmentation

The purpose of the bottom layer is to provide the initial classification of each
pixel into one of the semantic classes. As a single pixel does not contain enough
information for accurate classification, one must consider its context.

In a patch-based approach (e.g. the baseline of [182]) the context of a pixel
is an image patch of certain size, centered on the pixel. Each pixel is then
classified separately, based on the features extracted from the corresponding
patch. The downside of this method is that the final result can be quite noisy,
since neighboring pixels can be assigned to completely different classes.

Another approach is to use regions (super-pixels), i.e. to segment the image in
coherent regions, which ideally share the same semantic label. Classification is
then performed on the region level, which provides three main advantages over
the patch-based approach. First, since all pixels within a region share the same
class, the result is generally less noisy. Second, the dimensionality of the problem
is significantly reduced as the number of regions in the image is typically two
orders of magnitude lower than the number of pixels. Third, coherent regions
can provide a stronger clue for a classifier e.g. by their specific shape. Yet, any
errors in the segmentation step will propagate to the classification, since the
final labeling is restricted to follow the super-pixel boundaries.

In our work, we opt for a region-based approach, as state-of-the-art results
in semantic scene segmentation have been achieved by similar approaches [66,
184, 100]. Our experiments validate this choice, as we show in Sec. 5.7. The
implementation of a region-based classification approach consists of three steps:
segmenting the images into regions, extracting features from the regions, and
using a classifier to obtain probabilistic estimates of classes, or labels, for each
region. In this section we investigate how different segmentation algorithms
and classifiers affect the speed and quality of facade labeling.
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5.4.1 Image Segmentation

One of the most important choices in region-based segmentation is the number
of regions created. We define the maximum achievable accuracy (MAA) as the
accuracy (pixel-average or class-average) obtained by using an oracle classifier,
which assigns each region the label of the pixel majority in the ground truth.
Clearly, a pixel-based oracle classifier achieves the MAA of 100%, since every
pixel is classified separately. By using region-based segmentation we introduce
the constraint that all pixels in a single region share the same class. On the one
hand, a more fine-grained segmentation tends to result in a higher MAA. On the
other hand, classifiers tend to perform better on discriminative and therefore
larger regions. Even though coarse-grained segmentation is better suited for
classification purposes, this process introduces errors when semantically different
regions merge together, which reduces the MAA. Intuitively, finding a good
segmentation of the image is equivalent to discovering the optimal trade-off
between region size and discrimination potential.

Over the years, a large number of image segmentation algorithms have been
developed [31, 48, 1, 6, 193]. In this work, we chose to evaluate three dissimilar
algorithms on the task of facade segmentation. The first, Mean-shift [31], is a
popular algorithm that was demonstrated to perform well for facade parsing
in our earlier work [113]. Second, we evaluate one of the fastest segmentation
algorithms to date, SEEDS [193]. This method was shown to have competitive
results while running in real-time. Finally, the third algorithm in our comparison
is gPb [6], which sacrifices running time for an accurate calculation of the
segmentation tree. In order to perform a fair comparison to the other algorithms,
we consider only a single level in the gPb tree.

5.4.2 Feature Extraction

We use the same feature extraction algorithm in all of our experiments. Following
the procedure described in [66], we extract appearance (color and texture),
geometry, and location features for each region. This choice was motivated
by the fact that the same features are used in several top-performing scene
segmentation approaches [66, 100, 164]. Additionally, the publicly available
implementation in form of the Stair Vision Library [67] enables us to quickly
extract features from pre-segmented facade images. With default parameters,
this results in feature vectors of size 225.
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5.4.3 Classifiers

Given its feature vector, our goal is to assign to each region one of the semantic
classes described in Sec. 5.3. For this task, we consider five different multinomial
classifiers:

1. LOG: Multiclass logistic regression classifier [67]

2. LOG-CRF: An extension of LOG, which adds a Potts-model CRF with
superpixels as nodes. [67]

3. MLP: Multilayer Perceptron [38]

4. SVM: Multiclass Support Vector Machine [25]

5. RNN: Recursive Neural Network [164]

In each of the above classifiers, its output for each region can be interpreted as
a confidence score of assigning the region to a certain class. These scores can
be transformed into a probability distribution using a softmax function.

For the first two methods, a boosted one-vs-all classifier is learned for each class
using Adaboost. Then, the outputs of the classifiers are used as features
for learning the multiclass logistic model (LOG) with a linear predictor
function. The LOG-CRF model is obtained by adding a pairwise term between
neighboring segments, which has a smoothing effect. For more details about the
implementation, please consult [67]. The multilayer perceptron we use is a feed-
forward artificial neural network with a single input, hidden and output layer.
The number of neurons in the input layer is 225, equal to the number of features.
The output layer contains as many neurons as there are semantic classes. Using
a rule-of-thumb that states that the optimal size of the hidden layer is usually
between the size of the input and the size of the output layers, we set the
number of hidden neurons to 75. As the SVM classifier we use the publicly
available one-vs-one multiclass SVM with a Gaussian kernel function [25]. The
parameters C and γ are determined from the validation set. Finally, the RNN
classifier was shown to perform well for the semantic segmentation of general
scenes [164] and building facades [113]. In line with [113], we set the length of
vectors in the semantic space to 50.

5.4.4 Analysis

By setting the average number of regions per image to a fixed value, we evaluate
the interplay between different segmentations and classifiers. Second, we select
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the best combination of segmentation algorithms and classifiers, and investigate
how changing the number of segments affects the classification accuracy. For
completeness, we calculate both pixel-wise and class-wise accuracies. The former
is defined simply as the percentage of correctly classified pixels. The class-wise
accuracy is defined as the unweighted average of all class accuracies (the latter
being the % of pixels of a class that were correctly classified), which provides an
insight into classification performance on smaller classes. All of the presented
experiments are performed on the ECP dataset.

Segmentation and Classification

Keeping the average number of segments per image equal for all three
segmentation algorithms (∼ 690 segments), we evaluate the maximum achievable
accuracy (MAA), as well as classification accuracy achieved with each of the
classifiers from Sec. 5.4.3. The results obtained are shown in Fig. 5.3.

Generally, using SEEDS as the segmentation algorithm results in the lowest
classification accuracy. However, the difference between SEEDS and its
competitors is relatively small (around 1%), and one may opt to use SEEDS
when speed is of the essence (as it may very well be when dealing with complete
city modeling). Mean-shift and gPb performed similarly in each of the five
classifier scenarios. Since Mean-shift segmentation is much faster to compute
than gPb, we select it as our preferred segmentation algorithm.

Additionally, the data reveals that our method is quite robust with respect to
the choice of classifier. As expected, there is a noticeable difference between the
maximum achievable accuracy (MAA) and the results obtained with the five
classifiers. The gap becomes even more apparent when considering class-wise
accuracies. This is due to the unbalanced datasets, where the number of pixels of
each class label varies significantly. By definition, class-wise accuracy accounts
for this variation.

We can see that the LOG-CRF model benefits from the addition of pairwise
terms, compared to the LOG classifier. RNN outperforms the basic MLP model,
but the results do not justify the extremely long training time of RNN (around
24 hours). Unlike other methods, which classify each of the segments separately,
RNN also creates a hierarchical parse tree of the image by recursively combining
neighboring segments. However, existing RNN-based approaches [164, 113] do
not exploit any knowledge from the tree during classification. Additionally, we
achieved no improvement by using higher levels of the hierarchy, raising further
questions about the usefulness of the tree. Finally, the SVM classifier emerges
as the winner, as it achieves better results than its competitors both in terms
of pixel-wise and class-wise accuracy.
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Figure 5.3: (a) Pixel-wise and (b) class-wise accuracy of different segmentation
algorithms and classifiers on the ECP dataset. The final results are calculated
as the mean, and error bars as the standard deviation of results obtained from
five cross-validation folds.
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One may argue that although the SVM classifier has the best performance in
the first layer, some other classifier might provide better bottom-up information
to the other layers of the system. We tested this hypothesis with the LOG-CRF
and RNN classifiers, but obtained no improvement over SVM.

Number of Segments

The results in the previous section were obtained by setting the average number
of segments per image to a fixed value. Now we evaluate the effect of changing
the segmentation coarseness while fixing the best performing segmentation -
classification pair, i.e. Mean-shift and SVM. By changing the minimum region
size parameter in the Mean-shift implementation, we obtain 7 different levels of
coarseness, ranging from 1906 to 283 segments per image.

The classification results in Fig. 5.4 show that the maximum achievable accuracy
steadily drops as we use coarser and coarser segmentations. The classifier
performance follows a different trend, as its performance peaks around an optimal
number of segments. While large segments introduce errors by combining
neighboring objects into single regions, fine segmentations produce small image
regions which are not discriminative enough for the classifier. However, this
effect is prominent only when dealing with rather extreme numbers of segments,
as we obtain similar results from 500 to 1000 segments per image. Therefore, we
selected the middle level of coarseness in Fig. 5.4, amounting to 691 segments
per image, on average.

5.5 Middle Layer: Introducing Objects through
Detectors

In the middle layer, we enrich our labeling pipeline by localizing facade elements
directly through the usage of object detectors. Such detectors search for coherent
structures that can span several of the previously segmented regions, thus
allowing better discrimination. In this section, we demonstrate how detectors
are integrated into our system and argue that their usage benefits the overall
labeling quality.

Our bottom layer provides a probability distribution over labels for each region
(segment) in the image. These regions are determined using fixed segmentation
parameters for all input images. As shown in Fig. 5.3, even with the perfect
MAA oracle, we can reach at most 92% pixel accuracy and 90% class accuracy.
By using object detectors in the second layer, we not only provide information
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Figure 5.4: The effect of segmentation coarseness on (a) pixel-wise and (b)
class-wise accuracy of the oracle and SVM classifier on the ECP dataset.
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Trained on Evaluated onpositives negatives
windows 3924 from Belgian facade images 8343 from PASCAL VOC eTRIMS/ECP
doors 447 from Belgian facade images 8343 from PASCAL VOC eTRIMS
cars (frontal) 516 front- and rear-view car images 4268 from PASCAL VOC eTRIMS
cars (side) 344 from [107] 4268 from PASCAL VOC eTRIMS

Table 5.1: Overview of the data used to train the generic detectors.

from a second source, but also allow our final labeling not to be constrained by
the initial segmentation boundaries. This is especially apparent for the case
of window detection, where the initial object boundaries often do not coincide
with image gradients.

From all classes present in the ECP and eTRIMS datasets, some are best
discriminated by their texture and color (sky, grass, road, ...). Other classes,
such as window, door and car, are characterized by their distinctive shapes and
sizes, and can therefore be discovered by classical object detectors. For these
3 object categories we trained object detectors, explained in more detail later,
with training data coming from different sources. The total number of windows
in the ECP dataset is large enough to train a detector which is specific to
the Haussmannian style. Training a style-specific detector also benefits from
the fact that Haussmannian windows and doors samples do not show much
variance in appearance. In contrast, the eTRIMS dataset does not follow a fixed
architectural style and shows a high variance of object appearances. At the same
time, eTRIMS contains fewer samples per object class (1016 for windows, 85
for doors and 67 for cars). The higher variation combined with fewer examples
makes training reasonable detector models by using only eTRIMS data infeasible.
Therefore, we used data from an outside source to train style-agnostic window,
door and car detectors. We call these detector models generic models (as
opposed to specific models), as the data used for training (generic data) does
not follow any specific style. As shown in Table 5.1, the window, door and car
samples originate from various sources, e.g. from a dataset of Belgian facades,
or from a general-purpose car datasets [107].

5.5.1 Object Detectors

Selecting the appropriate detector is not a simple task, as object detection is
still an area of very active research. In recent years, many top-performing object
detection systems have been based on the well-known deformable parts models
(DPM) from Felzenszwalb et al. [46]. These detectors show excellent detection
quality as demonstrated, for example, on the yearly PASCAL VOC [45] challenge.
Using multiple components and parts gives these detectors an advantage when
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detecting object classes characterized by a considerable amount of variation in
their spatial extent. Conversely, when the object class is characterized to contain
roughly rigid elements, classifiers based on a single template seem to be more
appropriate. Lately, approaches based on the integral channels classifier [40]
have demonstrated excellent quality [11] and detection speed [10]. The latter
detector, dubbed Very Fast by the authors, not only reaches 100 Hz on the
task of pedestrian detection, but also generalizes well to other classes. For
example, in the German traffic sign detection challenge [80], one of the winning
approaches [118] was based on this detector.

We decided to compare the Very Fast and the DPM detector for the window
detection task, using the following setup. For both detectors we train one
model in each of the 5 folds of the Haussmann-specific window training data, as
described in Sec. 5.3. For each fold we use all available positive training samples,
while patches not overlapping with windows are used as negative examples.
Additionally, we augment the negative set with 8383 images not containing
windows from the PASCAL VOC dataset. Speed comparisons were performed
on an Intel Core i7 870 CPU + Nvidia GeForce GTX 590.

Deformable part-based model detector (DPM): The DPMs are trained
using the latest release (version 5) [63] with default settings. The number of
components is set to 1. The training took roughly 5 hours, and the testing speed
of 3.8 sec/image can be sped up by a factor of 10− 15 by using a cascade [47].
We noticed that training this window detector with 2 or more components only
reduces the overall quality while increasing the training time.

Very Fast detector: We use the publicly available open source implementation
of the Very Fast detector [10]. The training is initialized by using a feature
pool size of 30000 random features. We perform 4 rounds of training (2000 stage
classifiers), where each round is followed by bootstrapping 5000 hard negative
samples. With this setup, training lasts around 8 hours. The testing time of 2.1
sec/image can be sped up by a factor of around 40 by approximating nearby
scales and using a soft cascade, as described in the original paper.

The performance of all detectors is evaluated using the PASCAL VOC overlap
criterion of 50% overlap over union. Fig. 5.5 compares the mean detection rates
of windows in the ECP dataset, where the detectors have been trained with
Haussmannian windows. For each of the 5 folds, we trained a DPM detector
and a Very Fast detector. All detectors are evaluated on their appropriate
testing sets and the results are then averaged over the 5 cross-validation folds.

The results reveal that the single template-based Very Fast detector performs
better than DPMs on this task. This behavior may be explained with the fact
that the window and door classes do not consist of independently moving parts.
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Figure 5.5: Comparison of the dataset-specific DPM and Very Fast on the
task of window detection. The plot shows the mean FPPI versus miss-rate,
averaged over 5 folds.
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Figure 5.6: Comparison of specific, generic and combined window detector on
the ECP dataset. The combined detector is trained on the joint training set of
style specific and generic window samples.
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Furthermore, image rectification leads to axis-aligned window corners. Due to
the better detection quality and speed we opted for the Very Fast detector
in all following detection experiments. Fig. 5.7 shows some example window
detections of the Very Fast detector. For the task of car detection, DPMs
might have a better performance due to the higher shape variability of the
car class, but our experiments indicate that the Very Fast detector performs
adequately on the few car samples in the eTRIMS dataset, where cars are
usually shown either from the side, front or rear.

5.5.2 Generic and Specific Object Detectors

The ECP dataset contains 3096 windows and 109 doors, exhibiting the style
of typical Haussmannian facades. Hence, all windows and doors have similar
appearances and are therefore well suited to train Haussmann-specific window
and door detectors. On the other hand, eTRIMS provides only 1016 window
and 85 door instances from many different architectural styles, which leads to
a high variance of e.g. appearance and aspect ratio. A common strategy to
handle such diverse object classes consists in clustering the data into subsets
(e.g. by their aspect ratio [46]) and independently training one detector for
each subset. This would further reduce the number of samples used for training.
We therefore did not train dataset-specific detectors on eTRIMS. Instead, we
use the eTRIMS dataset as a proof of concept which shows that, even when
using generic detectors trained with data coming from different sources, we can
improve the labeling quality in our middle layer.

To recapitulate, we use style-specific detectors if there are enough samples in
the training data. Otherwise, we train generic detectors. Still, we can gain some
insight by evaluating the performance difference between detectors trained on
style-specific and generic input data.

In Fig. 5.6 we compare the generic and specific window detectors on the ECP
dataset. At 1 false positive per image (FPPI), the generic detector discovers
around 70% of the windows, while the specific detector finds more than 90%.

Even though the generic detector could be used to improve window labeling
in the middle layer, the specific detector has much better detection rates with
fewer false positives. On the other hand, the advantage of using a generic
detector lies in reduced training times when the system should be applied to
many different styles. Instead of always retraining style-specific detectors -
and having to know which style is relevant for any individual building - one
might opt for collecting a large set of generic detectors for different facade
elements and just select which detectors to use for specific styles. The detector
obtained by combining specific and generic training data outperforms the
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Figure 5.7: Example detections of the Very Fast specific window detector. The
color encodes the confidence of the detection from high confidence (red) to low
confidence (black).

generic detector, however it does not match the quality of the specific detector.
By adding specific Haussmannian windows to the training data, we get a better
representation of Haussmannian windows and therefore improve over the generic
detector model. On the other hand, by adding generic window samples to the
Haussmannian samples, we add a much higher variability to an otherwise quite
homogeneous training data. We believe that this variability cannot be exploited,
as the more general window detector introduces new false positives rather than
detecting additional windows that were missed before. In conclusion, style-
specific detectors perform better than generic detectors, especially when the
data variation is limited (e.g. for Haussmannian windows). Generic detectors
can still be used when it is infeasible to re-train detectors for every new style or
when insufficient style-specific training data is available.
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Figure 5.8: Learning label distributions for the window detector. Window
detections on the ECP validation set are sorted by their score in descending
order. High-scoring detections (top-left) provide a much stronger prior than
the low-scoring detections (bottom-right)

5.5.3 Learning Detector Label Distributions

In order to merge the information coming from the object detectors with
a semantic labeling of an image, we need to transform the detector output
(typically a set of bounding boxes with scores) into per-pixel label probabilities.
The simplest approach would be to simply set the probability of each pixel
within a detection to 1 for the class corresponding to the detector (e.g. window),
and zero to all other classes. However, window detections often cover other
parts of the facade, such as a balcony or wall. The classification accuracy
of balconies and walls would thus be negatively affected. To illustrate this,
Fig. 5.7 shows an example output of the window detector, where the score
of each detector is color-coded (brighter means higher detector confidence).
Furthermore, not all detections ought to have the same influence: we want
to significantly boost window probabilities in bounding boxes of high-scoring
detections, but to be more conservative with low-scoring detections, since they
might be false positives.

Let ∆ = {δk}1≤k≤K be the set of K detectors. In the ECP dataset we use only
a window and a door detector, so K = 2. We propose a novel way of learning
the detector label distributions Pδk(l|xi), i.e. the probabilities that a given
point xi in a test image belongs to one of the semantic labels l ∈ Ψ according
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(a) ECP (b) eTRIMS

Figure 5.9: Learned label maps from the training set in one cross-validation
fold, by averaging over the different facades. Brighter colors denote higher label
probability. Note the high level of regularity and alignment in the ECP dataset
compared to the more washed-out probabilities for eTRIMS.

to the detector δk. To achieve this, we investigate how detections of a certain
score spatially overlap with the ground truth labeled images in the validation
set.

Let us denote the set of N images in the validation set with Xv = {xn}1≤n≤N ,
and their corresponding ground truth labeled images with Y v = {yn}1≤n≤N .

After running a detector δk on the validation set, we obtain a set ofMk detections

Dv
k = {dj | dj = (bj , rj ,yj)}1≤j≤Mk

(5.1)

where each detection dj is characterized by its bounding box bj , score (detector
confidence) rj and the labeled ground truth corresponding to the image where
the detection was found: yj ∈ Y . The detections in the set Dv

k are sorted by
their score in descending order.

Then, for each detection dj ∈ Dv
k, we create a sub-image Sj by extracting the

area of the corresponding ground truth label yj covered by the bounding box
bj , denoted as

Sj = yj [bj ] (5.2)

The extracted sub-images are all subsequently rescaled to the same size using
nearest-neighbor interpolation. For the normalized width unorm and height
vnorm we chose the value of 100 pixels, since most detection sizes in our dataset
were on the same order of magnitude. The normalized sub-images are denoted
as

Snormj = NNResize(Sj , vnorm, unorm) (5.3)
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By construction, the normalized sub-images contain a subset of labels (classes)
Ψ. Next, we create |Ψ| binary label masks for each sub-image, defined as

Bl
j = 1l(Snormj ), ∀l ∈ Ψ (5.4)

where 1l is the indicator function selecting only pixels with the label l. To obtain
a smooth label distribution, we average the binary label masks of detections
with a similar score. For each detection, we consider γ neighboring detections
in the original sorted list of detections. Let j0 = max(1, j − γ

2 ). We define

Ql
j = 1

γ

j0+γ∑
i=j0

Bl
i, ∀l ∈ Ψ (5.5)

as the per-pixel probability that a given pixel in the bounding box bj is labeled
with l. The obtained Qj is a valid probability distribution, since∑

l∈Ψ
Ql
j = Jv,u (5.6)

where Jv,u is a matrix of ones. In our experiments we set γ = 200, as there are
on average 700 detections in the validation set. Very small values of γ result in
distributions that are no longer smooth, while by using higher values of γ the
detection score starts to lose its effect, as all Qj become rather similar.

Examples of the resulting Qj are visualized in Fig. 5.8 for l ∈ {window, wall,
balcony} (other labels are not shown for clarity). For high-scoring detections
(top-left corner of the image), our approach learns that the upper part of a
detection should be assigned to the window label, while the lower part often
corresponds to the balcony label. On the other hand, for lower-scoring detections,
the effect of false positives firing on wall areas is so prominent that the wall
label probability actually surpasses the window label. As we will see, the effect
of false positives on the final labeling will be kept at bay, since our system
hesitates to assign high label probabilities to low-scoring detections.

We can consider these learned label distributions as a look-up table during the
testing phase. In a test image xtest, we want to define the label distribution for
each pixel, given the detections of a single detector δk. Initially, we assume no
prior knowledge and assign a uniform label distribution to every pixel. Let

Pδk(l|xi) = 1
|Ψ| , ∀xi ∈ xtest, l ∈ Ψ (5.7)

be the initial probability distribution of labels in the image, where l is the
predicted label for pixel xi. After running the detector δk on the evaluation set,
we obtain a set of Me

k detections

De
k = {dj | dj = (bj , rj ,yj)}1≤j≤Me

k
(5.8)



MIDDLE LAYER: INTRODUCING OBJECTS THROUGH DETECTORS 81

For every detection dj in set De
k, we find the detection dNN(j) from the set Dv

k

with the closest score to rj . Its corresponding learned label distribution QNN(j)
is resized to fit the bounding box bj , denoted as

Qresized
NN(j) = NNResize(QNN(j), vj , uj) (5.9)

where uj and vj denote the width and height of the detection bounding box
bj , respectively. Finally, the pixel probability distributions inside the bounding
box are overwritten with the learned distribution, written as

Pδk(l|xi) = QresizedNN(j) (xi), ∀xi ∈ bj , l ∈ Ψ (5.10)

The process is repeated for each detection dj in the set De
k. Note that

each position within Pδk can be overwritten maximally once. There are
no overlapping detections within one detector output due to non-maxima
suppression. Detections of different object classes are handled by repeating the
process for each detector δk, resulting in several learned priors Pδk .

5.5.4 Learning Facade Label Maps

In the previous section, we learned the label distributions only for pixels covered
by detection bounding boxes. For other pixels, we assumed a uniform label
distribution. However, it is logical to assume that the probability of a certain
label also depends on the relative position of the pixel in the image. For example,
one would expect sky pixels to appear mostly in the upper parts of the image,
while the shop or road classes normally appear near the bottom of the image.

We can learn such a spatial prior in the form of facade label maps by analyzing
the ground truth labels in the training set. First, we resize each ground truth
image yn from the training set Y t to a common size (unormf = vnormf = 500).
The normalized ground truth image is defined as

ynormn = NNResize(yn, vnormf , unormf ) (5.11)

Similar to the previous section, we create |Ψ| binary label masks defined as

Cl
n = 1l(ynormn ), ∀l ∈ Ψ (5.12)

which are then averaged over the training set, obtaining |Ψ| facade label maps

Rl = 1
N t

Nt∑
n=1

Cl
n, ∀l ∈ Ψ (5.13)



82 A THREE-LAYERED APPROACH TO FACADE PARSING

where N t is the number of images in the training set Y t. Fig. 5.9 shows the
learned label maps Rl for the ECP and eTRIMS datasets. The final distribution
of labels in an evaluation image xe with dimensions ve and ue is given by

Pλ(l|xi) = NNResize(Rl, v
e, ue), ∀xi ∈ xe, l ∈ Ψ (5.14)

5.5.5 Incorporating Detector Knowledge into CRFs

In order to merge the labels coming from the bottom layer with those introduced
by the detectors from the middle layer, we place a 2D Conditional Random
Field (CRF) over the image pixels. Since we operate on pixels and not segments,
the proposed model is quite different from the LOG-CRF model in Sec. 5.4.3,
which is restricted to follow segment boundaries. We seek to minimize the CRF
energy, defined as the weighted sum of unary potentials for each node and all
pairwise potentials between neighboring nodes:

E(y|x,w) =
∑
xi

Φs (yi | xi,w) (5.15)

+
∑
xi

∑
xj∼ xi

Φp (yi, yj | xi, xj ,w) (5.16)

where xi is an image pixel, yi ∈ Ψ represents the variable encoding the predicted
label, w = {wseg,wdet,wlab,wpair} is the set of CRF parameters, and the relation
∼ represents the 4-pixel neighborhood. We use the standard Potts model as
the pairwise term, which encourages neighboring pixels to take on the same
label. This has the effect of smoothing the output, with the degree of smoothing
dependent on a parameter wpair. The pairwise term is defined as

Φp (yi, yj | xi, xj ,w) =
{

0, if yi = yj

wpair, otherwise.
(5.17)

The unary term is a linear combination of the low-level information from the
segment classification, the learned prior facade label distributions, and the
detector outputs:

Φs(yi | xi,w) = −wseg logPσ(yi | xi)

−
K∑
k=1

wdet
k logP δk(yi | xi) (5.18)

−wlab
yi logPλ(yi | xi)



MIDDLE LAYER: INTRODUCING OBJECTS THROUGH DETECTORS 83

Here, Pσ is the per-pixel probabilistic output of the bottom layer. Since the
classification in the bottom layer operates at the level of segments, all pixels
within the same segment share the same probability. The detector potentials
P δk and prior facade label map potentials Pλ were defined in Sections 5.5.3
and 5.5.4, respectively. Parameters wseg,wdet and wlab weigh the relative
importance of segment classification, detector label maps, and facade label map
priors. Note that |wlab| = |Ψ|, as we weigh each facade label map separately.

Applying the CRF model requires us to find the optimal labeling of a test image,
given the set of parameters w. The approximate solution to this problem can
be found efficiently using graphcut-based methods [21], since our CRF model
contains only unary and submodular pairwise terms. Additionally, due to the
usage of the Potts model, the α-expansion minimization guarantees a solution
that is within a factor of two of the global minimum [21]. In the next section
we describe how the parameter vector w can be learned from the validation set.

5.5.6 Learning the CRF Parameters

There already exists a body of work on learning parameters in random field
models. Most of these approaches use either a form of cross-validation or
piecewise training. A good overview of parameter learning in CRFs can be
found, for example, in [101] and [131]. We decided to follow the approach of
Szummer et al. [173], which is an efficient technique of max-margin learning in
grid graphs, e.g. images, based on the structured support vector machine [190].
This method represents parameter estimation as a maximum margin learning
problem, formulated as

max
w:‖w‖=1

γ s.t. (5.19)

E(y,xn; w)− E(yn,xn; w) ≥ γ ∀y 6= yn ∀n

where xn is an image, yn its corresponding ground truth, and n indexes all
instances in the training set.

The learning algorithm constrains the energy of the ground truth labeling yn to
always be smaller than any other possible labeling y by a margin γ. Since there
is an exponential number of possible image labelings, it is not feasible to solve
the problem formulated in Eq. 5.19. The solution proposed in [173] works with
a much smaller subset of labelings {Sn}, i.e. a constrained set. For each image,
a lowest-energy labeling is found using an efficient method, such as graph cuts.
If this energy does not satisfy the margin, the labeling is added to the subset
S(n). After all images are processed, the parameters w are updated to satisfy
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the newly added constraints, and the process is repeated. Since there is only a
finite number of labelings that can be added, the procedure is guaranteed to
converge.

The above formulation is further improved by enforcing a larger margin when
the labeling is far from the truth. This difference between desired and candidate
labeling can be expressed in terms of a loss function ∆(yn,y). By adding slack
variables ξn to account for constraint violations and rescaling the margin as
proposed in [177], the following quadratic optimization problem is obtained:

min
w

1
2 ‖w‖

2 + C

N

N∑
n=1

ξn s.t. ∀y ∈ Sn ∀n (5.20)

E(y,xn; w)− E(yn,xn; w) ≥ ∆(yn,y)− ξn (5.21)

ξn ≥ 0

where C is the regularization parameter and N is the number of training images.
A common approach is to use Hamming loss, i.e. the number of mislabeled
pixels in an image, as the loss function. However, our datasets do not have
a balanced distribution of classes, since some classes only constitute a small
percentage of total pixels (e.g. the door class). Mislabeling the small classes
does not significantly change the overall pixel accuracy, however the class-wise
accuracy is severely reduced. Therefore, we modify the loss function to take
into account the frequencies of classes in each ground truth image, producing a
greater loss when a low-frequency label is misclassified, resulting in a weighted
Hamming loss:

∆(yn,y) =
|y|∑
i=1

f−1(yni )[yni 6= yi] (5.22)

where [.] is the indicator function, and f−1(yni ) represents the inverse frequency
of the label yni in the ground-truth image yn.

To calculate the most violated constraint in Eq. 5.21 we must find the labeling
y which minimizes the refined energy function E′, defined as

E′(y,xn; w) = E(y,xn; w)−∆(yn,y) (5.23)

As shown in [173], the loss function can be ‘absorbed’ into the energy function
if it decomposes the same way as the energy. Since the weighted Hamming
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loss decomposes over image pixels (nodes in the CRF), we can transform it
into an additional unary potential. This corresponds to augmenting the unary
potentials in the CRF:

Φ
′

s (yi | xi,w) = Φs (yi | xi,w)− f−1(yni )[yni 6= yi] (5.24)

where Φs is defined in Eq. 5.18. The resulting problem of minimizing E′ can
still be solved efficiently using α-expansion, as the energy remains submodular.
Every labeling that violates the margin constraint in Eq. 5.21 is added to the
constraint set Sn, and the parameter vector w is updated by minimizing Eq. 5.20.
The process is repeated until w remains unchanged. We have implemented this
approach using the SVMstruct software [190].

5.6 Top Layer: Using Weak Architectural Princi-
ples

The previous two layers propose a generic approach to semantic labeling, which
is initially based on super-pixel classification and subsequently enriched by
object detectors. Although the results of the first two layers are quantitatively
convincing, the effect of the initial segmentation is still present in the output.
This manifests itself in the jagged boundaries of some elements as well as
the missing or misplaced facade elements. Hence it is difficult to use the
output of these layers to derive convincing facade models with clearly defined
boundaries and structures. Therefore, in the top layer we add meta-knowledge
about buildings without defining a full facade grammar, in contrast to Teboul
et al. [181]. This meta-knowledge is expressed through the concept of weak
architectural principles.

An important advantage of these guidelines over procedural grammar rules
is that the former are directly observable in the images, whereas the latter
keep some concepts implicit. Even if the combined application of a number
of grammar rules may lead to, for example, vertical alignment of windows,
there might be no single rule explicitly prescribing such alignment. An issue
with style grammars can therefore be the indirect coupling between what they
specify and what can be easily verified in the images. Our approach also enables
modeling of irregular facades, as we use architectural concepts as guidelines,
not as hard constraints. Some of the proposed principles are quite generic and
can be re-used for many different facade styles, while others were intentionally
designed with a certain style in mind, e.g. the Haussmannian style. Similar to
object detectors, most principles are formulated for the objects in the facades
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Figure 5.10: A high-level overview of the top layer. The blocks highlighted in
yellow depend on weak architectural principles, see text for description.

(window, balcony, door), as these elements have a clearly defined boundary.
In the end, the interplay between data evidence and various principles will
influence the placement, modification or removal of facade elements.

5.6.1 Overview

Our first task is to define how the idea of weak architectural principles can
be integrated into a generic system which allows for easy modification and
addition of these principles. Therefore, we employ a modular design, where
each principle has a well-defined interface and may be individually activated
depending on the dataset at hand.

Fig. 5.10 shows the overview of our proposed system. The first step is to
generate proposals of facade elements (bounding boxes with corresponding
labels) from the output of the middle layer (Sec. 5.6.1). Let us define a facade
configuration F as a set of facade elements which constitute a valid facade
(i.e. no overlapping windows). The most probable interpretation of the facade
from the previous layer is selected as the initial facade configuration F0, while
non-selected elements (such as overlapping windows) are placed in a set of
alternative facade elements, or a pool P0.

The initial configuration is not necessarilly the correct one, as it might contain
false positives. To remove them, we perform random subsampling, retaining
a subset of elements in the configuration, and moving the rest to the pool of
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alternative elements (Sec. 5.6.1). The subsampling is repeated in nρ rounds to
increase the likelihood that, in at least one round r, the subsampled configuration
Fr contains only true positives. Based on the subsampled configuration Fr,
the pool Pr is extended by new facade elements (Sec. 5.6.1). An optimization
method is proposed to select the subset of elements in the augmented pool P∗r
which best complements the subsampled configuration Fr (Sec. 5.6.1), given an
energy function Econfig. The best facade configuration Fopt over all nρ is then
fed into a post-processing step (Sec. 5.6.1).

The weak architectural principles are used for three different purposes in our
system, see Table 5.2. First, they can propose new elements (Sec. 5.6.2). Second,
some principles grade the proposal configurations through Econfig (Sec. 5.6.2).
Finally, certain principles are used to modify the facade element in the post-
processing step (Sec. 5.6.2).

Extracting Initial Facade Elements

Starting from the pixel-wise classification output of the middle layer, the
first step is to generate the initial configuration of facade elements F0. This
configuration should contain facade elements such as windows, doors, or
balconies. More precisely, each element is determined with the bounding box
and its corresponding label. However, our middle layer produces a labeled image
yL2, as opposed to discrete elements. To generate facade element proposals, we
start by using connected components in the label map yL2 and define a minimal
bounding rectangle Rz around the z-th connected component.

This minimal bounding rectangle is often too large compared to the actual
facade element. Some initial super-pixels float over the object’s real boundaries,
which leads to over-sized minimal bounding rectangles. To mitigate this problem,
we adjust the edges of each rectangle Rz by maximizing the coincidence with
the edges of the connected component. Each edge of the current rectangle is
adjusted by shifting it pixel by pixel towards the center of the rectangle. Let Dz

denote the number of pixels inside of Rz belonging to the connected component.
We limit the search range with the constraint that the number of connected
component pixels inside the new rectangle must not fall below τ init percent of
Dz. The threshold τ init was set to 0.6 in our experiments. At each position
of the element edge, we calculate the overlap between the edge and boundary
pixels of the connected component, divided by the edge length.

We find at most two possible edge proposals per rectangle side. The first one
results from the highest edge overlap with the connected component boundaries.
The second proposal is added only if the ratio between its overlap and the highest
edge overlap is above τedge, set to 0.75 in our experiments. The rectangle with
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the best combination of edge proposals is added to F0, and all other combinations
are added to the pool of alternative elements P0.

Sub-Sampling

The initial facade configuration F0 obtained by the approach described in the
previous section can potentially suffer from errors such as missing or misplaced
elements, and false positives. As our proposed architectural principles are
not designed to remove elements, dealing with false positives require separate
consideration.

Our approach to dealing with incorrect facade elements is to repeatedly sub-
sample the starting facade configuration with the goal of achieving at least
one configuration containing only correct elements. Furthermore, we do not
discard the elements that are not sampled, rather, we move them to the pool of
alternative elements for later consideration.

The sub-sampling is repeated in nρ rounds. In each round we randomly split
F0 into two disjoint subsets: the elements from the first subset are kept as the
facade configuration of the r-th round Fr, while the other elements are added to
the pool P0, constructing the pool Pr. The split is performed element-wise by
adding an element to Pr with probability prem, or to Fr with probability 1−prem.
We set prem = 0.4, which allows us to keep on average more than half of the
initial elements while at the same allowing to remove different combinations
of potentially incorrect candidates. In our experiments, the setting of nρ = 20
produced satisfactory results. Further increase in the number of rounds typically
does not result in finding a better configuration. When reducing the number of
rounds, the performance degrades gracefully, converging to the initial labeling
defined by F0.

Proposing New Elements

Assuming that the configuration Fr contains only true positives (which should
hold true for at least one round r), we have a strong cue for discovering facade
elements which are not present in either Fr or Pr. For example, we might search
for elements similar to those in the current facade configuration.

At this point, we can plug in any weak architectural principle which has the
property of proposing new facade elements. Depending on the configuration
Fr, different additional facade elements might be proposed in each round (see
examples in Sec. 5.6.2). The facade elements proposed by these principles are
then simply added to Pr, resulting in the augmented pool F∗r .
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Principle Propose Grade Post-process ECP eTRIMS
(Non-)alignment: vertical and horizontal - X X X X
Similarity of different windows of the same facade X - - X X
Facade symmetry X - - X X
Co-occurrence of elements - X - X -
Door hypothesis: first floor, touching ground X X - X -
Vertical region order: {shop∗, facade+,roof ∗, sky∗} - - X X -

Table 5.2: Weak architectural principles used to complement the segmentation
results of the first two layers. A tick in the “Propose” column denotes that the
principle is used to propose new facade elements. Some principles can be used
to evaluate the fitness of the facade configuration, denoted with a tick in the
“Grade” column. The “Post-process” principles can be used in the last step
of the inference procedure to modify the existing facade elements. Last two
columns indicate which principles are used for each of the datasets.

Optimization

Starting from an incomplete facade configuration Fr and an augmented pool of
elements P∗r in the facade, our goal now is to find the optimal facade configuration
Foptr with regard to a certain energy function. We assume that the elements in
Fr are fixed, so the optimization amounts to the search for the optimal subset
of elements in P∗r which, combined with the entire set Fr, minimizes the energy
function:

Foptr =Fr ∪ argmin
P⊆P∗r

Econfig(P ∪ Fr)

s.t. coverlap(P)
(5.25)

The coverlap constraints disallow any pair of overlapping elements in P to be
selected at the same time, and can be expressed as a set of linear inequalities of
the form Ax ≤ 1.

Selecting a subset of elements can be viewed as a binary integer optimization
problem, where each variable indicates whether the corresponding element
is included in the subset. In general, binary integer programming is NP-
complete [87]. There are of course certain subsets of energy functions for which
this optimization can be performed efficiently. For example, Kolmogorov and
Zabih [92] show that if the energy function can be written as a sum of functions
of up to two binary variables at a time (unary and regular pairwise potentials),
the optimization can be performed in polynomial time. However, we allow the
energy function to depend on an arbitrarily complex set of weak architectural
principles, see Sec. 5.6.2. For this reason, and to keep the optimization as
general as possible, we assume no prior structure of the energy function. This
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rules out the use of deterministic optimization approaches, such as cutting plane
methods (our objective function need not be convex), branch-and-bound (no
knowledge on lower and upper bounds), or dynamic programming (no optimal
substructure property).

Therefore, our choice is limited to (meta)heuristic methods. The simplest
approaches, e.g. hill climbing or coordinate descent, are prone to getting stuck
in local minima [147]. Monte Carlo methods such as simulated annealing [90] or
MCMC [61] are more powerful, but typically require a large number of objective
function evaluations. Genetic algorithms [78] are another popular metaheuristic,
which was adapted for efficient solving of integer optimization problems by Deep
et al. [37]. Although there is no proof of convergence, the latter implementation
was shown to compare favorably to random search or annealing-based algorithms
on certain datasets. We use an existing implementation of this approach in
MATLAB’s Global Optimization Toolbox [119], with default parameters, to
solve the minimization problem in Eq. 5.25.

Post-Processing

After nρ rounds of sampling and optimization, the facade configuration with the
lowest energy F opt is selected as the best one. Note that the bounding boxes
of facade elements boxes are fixed during optimization. Therefore, we employ
post-processing principles on the best configuration, to clean up the final result
by adjusting facade element boundaries.

5.6.2 Weak Architectural Principles

The weak architectural principles introduce meta-knowledge about facades into
the labeling process. All principles take a configuration of existing facade
elements as input, and can be divided into three main categories based on
their output. The first category contains principles which propose new facade
elements. These are used for generating new objects, which have not yet been
discovered in the first two layers of our pipeline. Second, some principles can be
used to grade proposal facade configurations, producing a single number, the
‘energy’ of the configuration as output. For example, the alignment principle
should produce low energy for configurations with well-aligned elements. Third,
some principles are used as a simple post-processing step, modifying existing
elements in the facade configuration. Table 5.2 shows an overview of our
proposed principles, sorted into the three main categories. The last two columns
denote whether the principle was used while analysing a certain dataset. In
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Figure 5.11: Similarity principle: Left: windows marked with red rectangles
are the initially discovered windows. Right: the similarity voting space contains
strong peaks at previously undetected windows.

the following sections, we describe in detail the aforementioned categories of
principles.

Element-Proposing Principles

Based on a given facade configuration Fr, element-proposing principles suggest
new facade elements by exploiting meta-knowledge about (style-specific) facade
structure.

As shown in Table 5.2, we identify three different principles for the proposal
of new facade elements, namely the similarity, symmetry and door hypothesis.
Each of these principles proposes a separate set of facade elements, which we
denote Wsim, Wsym, and Wdoor, respectively. Other principles can be added if
necessary. We denote with W the set of all facade element proposals generated
by the principles, i.e. W = {Wsim ∪Wsym ∪Wdoor}.

The similarity principle is based on the observation that most facades contain
visually similar objects. If some elements are missing in the current facade
configuration, they can still be found through visual similarity to the existing
elements, see Figure 5.11. This principle is applied separately per object class
and is parameterized by the median width umed and height vmed of the object
category. Our implementation is similar to the one described in Chapter 4.
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Every object in the facade votes for similar elements using an ISM-like voting
scheme [108]. As features we use self similarity descriptors [153] calculated at
Harris corner points.

Let us consider a set of feature points that fall within the bounding box of
a single element in the facade configuration. Each of these feature points is
defined by its descriptor, a vote vector to the center of the bounding box, and
the size of the bounding box of the element. For each feature point, we search
for 10 nearest neighbors among all feature points in the image based on its
descriptor. The neighbors then cast votes into a global voting space using a
Gaussian kernel of size min(umed, vmed). The process is repeated for all facade
elements in the configuration. After all votes are collected, we perform greedy
non-maximum suppression: each maximum defines an area of size umed × vmed

in which we keep the maximum and set the other values of the voting space in
that area to 0. Most of the maxima in the voting space will be situated inside
the bounding boxes of existing elements. Each remaining maximum defines
a bounding box with the size defined as the median of bounding boxes sizes
corresponding to votes which contribute to the maximum.

As the similarity voting is performed based on the subset Fr (Sec. 5.6.1), some
maxima will correspond to facade elements already in Fr. Only new elements
build the set Wsim. We limit the number of new proposals to |Fr|, as we do
not wish to add more proposals than the number of elements currently in the
configuration.

Harris corners are also used as a simple measure in the principle of vertical
symmetry. The interest points are mirrored about a symmetry axis (line)
hypothesis. A match is defined by two interest point locations, which are mirrors
of each other about the symmetry axis. Note that we only match interest point
locations at this point, not their descriptors.

The maximum number of matches divided by the points under consideration
defines a simple symmetry score for the corresponding symmetry axis. If
symmetry is detected (symmetry score > τsym), facade elements are mirrored
about the similarity line with the maximum score and constitute the set of
proposals Wsym. For the value of τsym we select the lowest symmetry score
from all symmetric facade examples in the training and validation sets. Fig. 5.12
shows an example of a symmetric facade, with the symmetry axis denoted as a
dashed blue line.

The door hypothesis principle creates a single door proposal Wdoor, and it is
only applied when Fr does not already contain a door bounding box. If there
are no door objects in the pool of alternative elements either, we fall back to
the probabilistic output of the bottom layer. We expect a door to be at least
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the size of a median window in the facade. Therefore, we first search for the
maximum response by sliding a window of size umed × vmed (median window
size) over the bottom layer probabilistic output and averaging pixel probabilities
corresponding to the door class inside that bounding box. From the position
with the maximum support, we greedily grow the door bounding box until the
average probability of the door class starts decreasing. Even if the real image
contains several doors, this principle is limited to produce only one element, the
one with higher support.

Element-Grading Principles

Element-grading principles contribute to the energy function Econfig which is
used to judge a proposal facade configuration F. We define this energy function
as

Econfig(F; yL2) = Edata(F; yL2) +
∑

π∈weakPrinciples

απEπ(F; yL2) (5.26)

where yL2 represents the middle layer output (CRF labeling). The data term
Edata encourages the configuration to be as similar as possible to the prediction
from the middle layer. It is independent from any principle and defined by:

Edata(F; yL2) =
∑
l∈Ψobj

Edatal (F; yL2) (5.27)

Edata
l (F; yL2) = −

∑
yi∈yL2

[yi = l ∧ g(yi,F, l) = 1]/
∑

yi∈yL2

g(yi,F, l) (5.28)

+
∑

yi∈yL2

[yi = l ∧ g(yi,F, l) 6= 1]/
∑

yi∈yL2

[yi = l], (5.29)

where Ψobj ∈ Ψ denotes the subset of all object labels, as only facade objects
are optimized in this step. Note that we define the data term separately for
each object label l ∈ Ψobj . The function g(yi,F, l) returns 1 when yi is covered
by a bounding box with the same label l from F. Expression 5.28 reduces the
energy when labeled pixel yi is covered with a facade element with the same
label from configuration F, while Eq. 5.29 penalizes object pixels not covered
by facade elements from Fr.
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Figure 5.12: The (non-)alignment principle states that facade elements should
be either aligned or clearly off-center. In this image, windows exhibit a high
degree of horizontal and vertical alignment. Two windows bordered with yellow
lines are vertically off-center to other windows. This should not be penalized,
as this is a often-observed window configuration. The blue dashed line depicts
the symmetry axis of the facade.

The energy of each grading principle is weighted by απ and added to the total
energy. We determine the values for απ on the validation set. In the following,
we will describe the principles that contribute to the energy function.

The (non-)alignment principle is based on the observation that many facade
elements of the same type are either exactly aligned or clearly off-center (see
the yellow lines in Fig. 5.12). The energy for an object class is defined as

Ealign(F) =
∑

(e1,e2)

(
β(s(e1)

1 − s(e2)
1 ; τw) + β(s(e1)

2 − s(e2)
2 ; τw) + (5.30)

β(t(e1)
1 − t(e2)

1 ; τh) + β(t(e1)
2 − t(e2)

2 ; τh)
)

(5.31)

β(z; τ) =
{
τ2

6 (1− [1− z/τ ]2)3, if |z| ≤ τ
τ2

6 , if |z| > τ
(5.32)
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Figure 5.13: The vertical region order principle determines the border between
the sky, roof, wall and shop areas of the facade.

where e1 and e2 refer to each possible combination of same-class elements in F,
and (s1, t1) and (s2, t2) represent the coordinates of the top-left and bottom-
right corners of an element. The capped influence function β rates the top,
bottom, left and right alignment of a pair of facade elements. The function has
a constant value as soon as the distance between element boundaries exceeds a
certain threshold τ . Based on our initial observation that windows are either
aligned or completely misaligned, we set τw and τh to half of the median object
width and height respectively.

The principle of co-occurring elements reflects the observation that pairs
of elements appear in certain fixed configurations. One particular case of this
principle is window and balcony co-occurrence: a facade should not have a
balcony without a corresponding window. Therefore, we first try to assign at
least one window to each balcony. Balconies without a corresponding window
are then penalized by adding a constant value τocc to the energy term. By
setting τocc > 0 we increase the energy of solutions containing one or more
solitary balconies. The co-occurence principle might as well be used for other
pairs of elements or even as a facade element proposing principle, but we leave
this for future work.

Post-Processing Principles

The vertical region order principle states the specific order of the sky, roof,
wall and shop areas observed for Haussmannian facades. We enforce such an
order in our output labeling (See Figure 5.13). First, we find the initial split
lines between the aforementioned areas. This is done by finding the connected
components of the corresponding labels and placing a split line on the lower



96 A THREE-LAYERED APPROACH TO FACADE PARSING

boundaries of the regions. Then, similar to Sec. 5.6.1, we test candidate split
positions by moving the split lines pixel by pixel in the upward direction, seeking
to maximize the overlap between the split line and region boundary pixels. After
the splitting positions between the regions are found, we switch the labels of
the aforementioned classes to be consistent with the region order.

The (non-)alignment principle is also used in the post-processing step. We
use the second part of the energy function Ealign (Eq. 5.31) to align windows
horizontally by adjusting the upper and lower borders of their bounding boxes.
We find the local minimum of this energy with the iterative BFGS Quasi-
Newton method [50]. The result is that all windows aligned horizontally within
a tolerance of τh will now be perfectly aligned with each other.

5.7 Results

We compare our approach to previous work on two datasets for facade parsing,
see Sec. 5.3. Tables 5.3 and 5.5 show the performance of all approaches evaluated
per class, as well as the average pixel and class accuracies. We show the results of
our system for each layer of the pipeline together with the top layer performance
of our previous work [113] and the performance of other approaches. Example
output of our system can be found in Figures 5.15 and 5.16.

5.7.1 ECP Database

All methods were evaluated following the same 5-fold cross validation, evaluated
on the updated annotations as described in [113]. In Table 5.3, we compare our
results with the Random Forest (RF) pixel classifier used as a baseline in [182],
the Reinforcement Learning (RL) grammar-based approach from Teboul et
al. [181], the domain knowledge learning (DKL) work of Dai et al. [35], and
the Spatial Pattern Templates (SPT) from Tyleček et al. [192]. We retrained
and evaluated the RF and RL classifiers using the publicly available code, while
DKL and SPT results were provided by their respective authors.

As expected, the simplest approach - Random Forest classifier based directly
on image patches [182] - exhibits the poorest performance. This can be partly
attributed to weak features (raw pixel values), and partly to the lack of
context, since every pixel is classified based only on its local patch of size
13x13. Compared to this approach, our bottom layer already achieves a better
performance for all classes, due to the fact that we use a superpixel-based
approach and more discriminant extracted features.
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Wi Wa Ba Do Ro Sk Sh Pixel
average

Class
average

RF [182] 33 67 32 82 52 92 20 53.46 53.73
RL [181] 55 82 49 43 52 97 82 73.24 65.66
DKL [35] 72 87 70 66 80 93 91 83.50 79.80
SPT [192] 75 86 73 66 85 95 95 84.20 82.14
3Layer [113] 75 88 70 67 74 97 93 84.17 80.71

Ours
L1 64 91 75 41 82 94 91 84.75 76.67
L2 76 90 81 58 87 94 97 88.07 83.36
L3 78 89 87 71 79 96 95 88.02 85.22

Table 5.3: Performance on the ECP dataset (in percent). All experiments were
performed with the same protocol (5-split cross-validation with 60 training, 20
validation and 20 testing images). L1, L2, L3: Our bottom, middle and top
layer output, respectively.

The state-of-the-art grammar-based RL approach [181] requires a prior definition
of a specific Haussmannian-style procedural grammar. The free parameters of
the grammar are then optimized such that the agreement between the resulting
labeling and the bottom-up merit function (RF labeling) is maximized. This
approach greatly improves upon the results of the earlier RF approach, yet
still performs worse than any layer output of our approach. One of the reasons
for this behaviour is that the somewhat over-simplified grammar restricts the
space of possible facade labelings, imposing certain structure even if it is not
present in the image. For example, vertically misaligned roof windows are not
supported with the existing grammar, and are thus mislabeled. Our approach
does not suffer from these issues. One may argue that the lower performance
of the RL method stems from their usage of less informative bottom-up cues.
Therefore, we investigate how the RL approach performs when using much
stronger merit functions, namely the output of our bottom and middle layers.
The results in Table 5.4 (right) show that the RL method indeed benefits from
stronger bottom-up information. However, when using our bottom and middle
layer as the merit function, the RL method achieves lower performance than
the merit function itself. This supports our claim that adding strong grammar
constraints can actually decrease the overall performance.

Comparable results to our bottom layer were achieved by Dai et al. [35],
an approach which, like ours, forgoes the usage of style-specific grammars.
Instead, it is designed to adapt to various building styles by learning weights
for different architectural principles. However, as the approach was tested on
only one building style (ECP dataset), it is difficult to assess the effectiveness
of the learning algorithm. Furthermore, their initial image segmentation into
rectangular regions is fixed and might pose a problem when dealing with more
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Pixel
average

Class
average

Pixel
average

Class
average

Ours
L1 84.75 76.67

RL [181]
RF merit 73.24 65.66

L2 88.07 83.36 L1 merit 82.41 72.58
L3 88.02 85.22 L2 merit 83.10 76.17

Table 5.4: Comparison of our approach to the Reinforcement Learning (RL)
approach of Teboul et al. [181] with different merit functions, on the ECP
dataset. RF: Random Forest; L1, L2, L3: Our bottom, middle and top layer
output, respectively.

general facades containing irregular appearance (e.g. eTrims dataset). Our top
layer utilizes a more flexible set of principles, which are not restricted to follow
the initial segmentation. For example, we allow classes such as car or vegetation
to keep their irregular boundaries.

Another region-based method, SPT [192] achieves comparable results to our
bottom layer, even outperforming it in class accuracy. This demonstrates that
adding a region-based CRF with higher-order potentials on top of the initial
segment classification boosts performance. We expect that our approach would
benefit by integrating the SPT method in the first layer, which we leave for
future work.

When considering the added value of each layer in our approach, it is clear that
the middle layer produces the biggest improvement in pixel accuracy for the
window and door classes, as was expected for the usage of object detectors.
Additionally, the accuracy of other classes goes up due to the usage of learned
label maps (Sec. 5.5.4) and the smoothing property of the CRF (Sec. 5.5.5).
By introducing high-level knowledge through the top layer, we further improve
on most of the classes. The noticeable drop in the roof and sky class can be
explained by the fact that the “region order” principle (Sec. 5.2) imposes a
straight line to separate regions which does not always match the real, more
complex, boundary. We nevertheless kept these strict horizontal split lines
between image regions, as they facilitate the process of procedural facade
modeling.

Compared to the top-layer output of our previous work [113], we improve on
almost all classes, boosting the average pixel accuracy to 88%. The increase of
nearly 4% was achieved through several refinements, namely: using SVM as the
region classifier, using stronger detectors, learning label priors, learning CRF
parameters, and using the new top-layer sampling approach.
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Bu Ca Do Pa Ro Sk Ve Wi Pixel
average

Class
average

CRF [210] 71 35 16 22 35 78 66 75 65.80 49.75
HCRF [209] 67 36 14 85 53 80 78 80 69.00 61.63
ICFHGS- [53] - - - - - - - - 77.22 72.23
SPT [192] 89 70 37 64 68 81 84 68 82.10 70.13
3Layer [113] 86 67 18 35 47 91 81 80 80.81 63.20

Ours
L1 91 61 26 29 51 94 82 66 80.42 62.52
L2 91 74 50 15 73 97 87 73 83.39 70.00
L3 89 73 49 15 73 97 87 75 82.90 69.81

Table 5.5: Performance on the eTRIMS dataset. Class accuracies are shown in
percent. The per-class results from Fröhlich et al. [53] were obtained on only
one cross-validation fold, thus we do not report them. L1, L2, L3: Our bottom,
middle and top layer output, respectively.

5.7.2 eTRIMS Database

As can be seen in Table 5.5, we outperform all previous results reported on
the eTRIMS dataset in terms of overall pixel accuracy. It is important to
note that even though some methods [53, 192] achieve higher class average,
their pixel accuracy is still lower than ours. This can be explained with the
poor performance of the pavement class in our approach, especially after the
smoothing effect of our CRF, which increases the confusion with the bordering
segments (mainly road). One of the reasons for this behaviour of the CRF is
that its parameters are learned on a relatively small validation set (10 images),
reducing the effect of unary potentials.

The difference between our bottom and middle layer is most apparent for the
window, car, and door classes. These are the very classes for which we had
trained object detectors. Additionally, the road class performance is significantly
boosted due to the smoothing effect of the CRF (unfortunately, at the cost of the
aforementioned pavement class). Finally, in the top layer, we only improve the
performance of the window class, which is not surprising, as this is the only class
in this dataset for which we use weak architectural principles. We also observe a
3% performance drop for the door and building classes. By analyzing the output
data, we can see that the door accuracy drops due to the rectangularization
process (see Sec. 5.6.1). Since some doors were partially covered by window
detections in the middle layer, they were re-labeled as windows when defining
rectangular window regions. Furthermore, many of the buildings in eTRIMS
contain window shutters, which are annotated with the building class in the
ground truth. Our generic detector, on the other hand, is trained on data
which includes the shutters in the window structure, therefore increasing the
confusion between the window and building class. Even though the final pixel
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Train Test

Bottom layer
Segmentation - 3.85 s
Feature extraction - 3.15 s
Classifier 18 m 3.05 s

Middle layer
Detector 8 h 2.1 s
Label maps 1 m -
CRF 70 m 3.5 s

Top layer Subsampling and optimization - 180 s

Table 5.6: Computation times for our method on the ECP dataset. ‘Train’:
total time spent during training for each method. Items marked with ‘-’ in the
‘Train’ row denote that the method has no training phase. ‘Test’: computing
times for one test image. Note that label map learning is a learned prior, so it
has no computing time during testing.

accuracy of the top layer is slightly lower than the accuracy of the middle layer,
the resulting labeling is more visually pleasing, as can be observed in Fig. 5.16.
Compared to our previous work [113], we notice a significant increase in the
performance of almost all classes.

5.7.3 Computing Times

We performed all of our experiments on an Intel Core i7 870 CPU with 8 cores.
Table 5.6 shows the average computing times on the ECP dataset, differentiated
with respect to the different layers. Please note that the training phase differs
for each method. As said in Sec. 5.4, the SVM classifier training is performed
on the training set, while detector label maps (Sections 5.5.3 and 5.5.4) and the
CRF parameters are learned on the validation set. The training protocol for
detectors is described in Sec. 5.5.1.

5.7.4 Application: Image-Based Procedural Modeling

We use the output of the top layer in a straightforward procedural modeling
scenario, encoding the facade as a set of CityEngine CGA rules [42]. The 7
different classes from the ECP dataset correspond to the terminal symbols of the
procedural grammar. However, we make a distinction between facade element
classes (window, balcony, door) and region classes (wall, roof, sky, shop). Each
element class is modeled in a separate layer and then overlayed on the vertical
split of facade regions. For example, we create the window layer by extracting
the binary mask of windows from the output of our system. This binary mask is
subdivided into rows and columns of elements, and encoded as a set of splitting
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Figure 5.14: Results on the ECP dataset. (Left) Input image. (Middle) Our
top-layer labeling. (Right) Procedural building model.
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CGA rules. The terminal symbols are then replaced with 3D models from a
library of architectural elements. Finally, the texture of the original image is
projected onto the wall and shop area, to create a more realistic visualization.
Several rendered models can be seen in Fig. 5.14. Note that our approach is
able to handle non-aligned roof windows correctly (first row), while it is not
forced to hallucinate non-existing ones (second row).

5.8 Conclusion

This chapter proposed a grammar-free method for facade parsing which is
divided into three layers. For the bottom layer we explored a variety of
different segmentation and classifier combinations to get our initial bottom up
facade labeling. In the middle layer we then introduced the usage of object
detectors to improve over the initial labeling. The results from the bottom
and the object detector responses are combined in a principled way by using a
CRF formulation, where the weights of the different CRF terms are estimated
automatically. Finally in the top layer we added facade specific information
via weak architectural principles. We proposed a general framework in which
principles can be removed or added. This facilitates the usage of this layer for
other facade styles. The output of our top layer are architecturally plausible
facade structures with clearly defined boundaries and structures. Our method
was evaluated on two datasets and shows state of the art performance.

In a final step, we demonstrate how the output of our top layer can directly be
used for the image-based procedural modeling of facades. Instead of building our
system upon a previously defined grammar – as demonstrated in the previous
chapter – we could actually infer procedural rules from the output of our system.
These rules are instance specific and if extracted from a single building can in
that case only be used to generate a model of that building. In the following
chapters, we will show that not only can we induce procedural grammars with
generalizing capabilities from clean data, but also use the noisy output of the
middle layer to infer hierarchical structures consistent across the entire dataset.
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Figure 5.15: Results on the ECP dataset. (Left) The original image. (Middle-
left/center/right) Outputs from the bottom, middle and top layers, respectively.
(Right) Ground truth.
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Figure 5.16: Results on the eTRIMS dataset. (Left) The original image. (Middle-
left/center/right) Outputs from the bottom, middle and top layers, respectively.
(Right) Ground truth.



Chapter 6

Semantic Segmentation of
3D Urban Scenes

In the previous chapter, we focused on an inherently two-dimensional task:
parsing facades from images. In this chapter1 we generalize our approach
to the task of semantic segmentation of 3D city models. Starting from an
SfM reconstruction of a street-side scene, we perform classification and facade
splitting purely in 3D, obviating the need for much slower image-based semantic
segmentation methods. We show that a properly trained pure-3D approach
produces high quality labelings, with significant speed benefits allowing us to
analyze entire streets in a matter of minutes. Additionally, if speed is not of
the essence, the 3D labeling can be combined with the results of our 2D facade
classifier, complementing the performance. Further, we propose a novel facade
separation algorithm based on semantic nuances between facades. Finally, we
upgrade the architectural principles used for 2D facade labeling to a set of new,
3D-specific principles and propose an efficient optimization scheme based on an
integer quadratic programming formulation.

105
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Figure 6.1: The proposed approach for semantic segmentation of
building blocks - overview. In contrast to the majority of current facade
labeling methods, our approach operates completely in 3D space. (a) image-
based SfM 3D point cloud (b) initial point cloud classification (c) semantic
facade splitting (d) structure modeling through architectural principles and (e)
projected original images onto the estimated 3D model. The advantages of a
pure-3D approach range from significant speed-up to complementarity with 2D
classifiers.

6.1 Introduction

Increasingly, the topics of recognition and 3D reconstruction are intermingled.
On the one hand, adding 3D features may aid recognition, on the other the
knowledge about object classes helps with their 3D modeling. In the end, one
can imagine feedback loops - cognitive loops if you will (e.g. [183])- where a
system jointly evolves through the solution spaces that each such subproblem
(e.g. recognition, 3D reconstruction) lives in. Human vision seems to strive for
such kind of unified, consistent interpretation and the endeavour seems to serve
us well.

This chapter focuses on leveraging the 3D information to aid the reconstruction
of city models. The task comes with both the subtasks of recognition and
3D modeling. Thus, the models should not only consist of high-quality 3D
models, but ought to come with delineated functional units (e.g. windows, doors,
balconies, etc.). Although substantial effort has already gone into the creation of
3D city models, efforts to render those ‘semantic’ are rather recent. One of the
most important steps to that effect is semantic facade parsing, introduced in the
previous chapter. However, insted of treating the 2D labeling as a pre-processing
step, this chapter investigates whether we can benefit from a direct coupling to
the 3D data that mobile mapping campaigns also produce. More concretely, this
chapter presents an entire pipeline for the analysis of building blocks, starting

1The chapter is based on the joint work with Jan Knopp, Hayko Riemenschneider and
Luc Van Gool, to appear in CVPR 2015. While all parts of this work are a result of joint
work and discussion, Anđelo Martinović and Jan Knopp worked on 3D classification and weak
architectural principles in 2D and 3D, and share first authorship. Hayko Riemenschneider
focused mostly on the facade splitting approach.
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from raw images and resulting in a semantic 3D model, with all steps carried
out in 3D. As we will show, the avoidance of jumping back and forth between
2D and 3D leads to substantially shorter runtimes (20x faster).

In particular, this chapter introduces three main contributions:

1. An end-to-end facade modelling fully in 3D;

2. A novel facade separation algorithm based on the results of semantic
facade analysis;

3. A generalization of the previously introduced 2D weak architectural
principles like alignment, symmetry, etc. to 3D, along with a faster
optimization scheme.

6.2 Related Work

This chapter joins multiple research areas for the purpose of 3D facade
understanding and modeling. Therefore, we briefly review the current state of
the art in (1) 3D classification, (2) facade parsing and (3) facade separation.

6.2.1 3D Classification

A vast amount of work has dealt with the issue of 2D classification, see Chapter 5.
However, the bulk of 3D classification work is rather recent, especially where
2D and 3D features are used together. To the best of our knowledge, Brostow
et al. [23] were the first to combine image classification and sparse 3D points
from SfM. Ladicky et al. [103] combine depth maps and appearance features
for better classification. In a similar vein, some approaches [127, 5] combine
LIDAR and image data.

Since then, recent works show the advantage of combining 3D and 2D for
classification [165, 88, 85, 150, 212] or place recognition [149] using LIDAR, 3D
CAD or Kinect [214] models. However, 3D is used in the context of improving
2D recognition, as these approaches still heavily rely on 2D features. Some even
show that 2D information is much more important than 3D descriptors [150].
In contrast, instead of using 3D as useful aid for the 2D classifier, we design
an exclusively 3D pipeline as a fast alternative to previous approaches, with
competitive results.

In the 3D-only domain, a variety of local descriptors have been introduced in
recent years. Unfortunately, the best performing features are typically expensive
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to calculate, or limited to e.g. manifold meshes [86, 22, 91]. Furthermore,
automatically obtained 3D is incomplete, containing noise, holes and clutter.
Thus, spin images [84] are still a popular choice (shown to be robust in the
presence of noise [148]), combined with several low-level features such as color,
normals, histograms etc. [65, 120, 165, 130, 143, 172]. We follow this vein of
research, carrying out facade labeling completely in 3D: from using simple
3D features, point-based classification with Random Forests, and with a 3D
Conditional Random Field smoothing. This results in competitive results with
significant speed benefits.

6.2.2 Facade Parsing

For street scenes, classical image segmentation techniques [157] have been
extended with architectural scene segmentation using color and contour
features [12]. Additional sources of information such as a height prior [206,
207, 23] or object detectors [144, 113] are typically introduced on top of local
features. However, classification is performed mainly on 2D images, whereas
3D is introduced only at a procedural level [182, 162, 125].

To capture the structure inherent to facades, different approaches have been
proposed. Several utilize shape grammars to learn and exploit the structure in
facades.

Alegre and Dellaert [3] model facades with stochastic context-free grammars and
rjMCMC sampling. Müller et al. [126] use regular grids to infer procedural CGA
grammar for repetitive facades. Shen et al. [154] assume multiple interlaced grids
and provide a hierarchical decomposition. A similar assumption of block-wise
decompositions can be used to parse facades using a binary split grammar [208].
Simon et al. [161] use a specialized Haussmannian facade grammar coupled
with an optimization based on random walks, and Reinforcement Learning [181].
Simon et al. [162] additionally use 3D depth information in a GA optimization
framework. Cohen et al. [30] propose efficient DP subproblems which hard-
code the structural constraints. Moving further away from hard-coded shape
grammars, Riemenschneider et al. [144] use irregular lattices to reduce the
dimensionality of the parsing problem, modeling symmetries and repetitions.
Kozinski et al. [97] relaxes the Haussmannian grammar to a graph grammar
where structure and position are optimized separately.

Moving entirely away from strict grammars, Dai et al. [35] use a facade-specific
segmentation together with learning weights for different meta-features capturing
the structure. Tyleček et al. [192] model alignment and repetition through
spatial relations in a CRF framework.
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In Chapter 5, we proposed a three-layered approach introducing 2D weak
architectural principles instead of rigid shape grammar rules. Since our goal
is still to impose as few restrictions on the facade structure as possible, we
build upon this work by introducing 3D architectural principles and an elegant
optimization formulation based on integer programming. This allows us to obtain
better quality of the reconstructed facades with significant speed improvement
over their 2D counterparts.

6.2.3 Facade Separation

All of the aforementioned works on facade parsing assume individual facades to
be separated beforehand. Yet, this separation is not trivial by far and quite a
few automated pipelines gloss over the issue.

In the full 3D domain, most work focuses on building extraction, which deals
with 2.5D height models and identifies individual building blocks and their roof
types based on height information [104].

Similar approaches have been adopted for street-level data, where height is
rightfully used as the most discriminative feature [207, 216]. Other methods
deal with repetitive features that reoccur on one facade and not on neighboring
facades [199]. These work well if the assumptions are correct, i.e. the buildings
have different heights and a quite different appearance of their facades. However,
some architectural styles aim at similar appearances and heights. Furthermore,
methods working in 2D require the facades to be completely visible in each
image, such as our edge-based facade separation approach in Chapter 3.

As an alternative to these approaches, we propose a semantic facade separation
approach. The aim of this approach is to exploit the usually varying layout of
semantic structures in different facades, which may share the same style. In
contrast to methods for facade structure understanding [198, 205] which require
already split facades, we propose to use the semantic scene knowledge to create
these splits.

6.3 3D Semantic Facade Segmentation

Our goal is to estimate a semantically segmented 3D scene starting from images
of an urban environment as input. As a first step, we obtain a set of semi-dense
3D points from standard SfM/MVS algorithms [204, 55, 83].
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Figure 6.2: Parameters of the 3D classifier. Left: performance (red)
and test time (blue) w.r.t. the number of trees and the minimum number of
observations per leaf. Right: the performance of each descriptor part individually
(and the final descriptor-desc) using RF classifier.

Next, we classify each point Pi in the point cloud into one semantic class Li
(window, wall, balcony, door, roof, sky, shop), using a Random Forest classifier
trained on light-weight 3D features (Sec. 6.3.1). Afterwards, we separate
individual facades by detecting differences in their semantic structure (Sec. 6.3.2).
Finally, we propose architectural rules that express preferences such as
the alignment or co-occurrence of facade elements. These rules have two
effects: they improve our results and directly return the high-level 3D facade
structure (Sec. 6.3.3).

6.3.1 Facade Labeling

We create the initial labeling of the 3D scene by employing a Random Forest (RF)
classifier on the following set of descriptors for each 3D point Pi: mean RGB
colors of the point as seen in the camera images; the LAB values of that
mean RGB [143]; normal (n) at the 3D point; 3D geometry captured using the
spin-image (SI) descriptor [84], calculated on different scales; the point’s height
(h) above the estimated ground plane; its “inverse height” (h−1), defined as the
distance from the uppermost point of the facade in the direction of the gravity
vector; depth (dph) defined as the distance of the point Pi to the approximate
facade plane. Since we do not have the facade separation available yet, we
estimate h−1 and dph from the subset of 3D points assigned to their nearest
camera. Thus, the full descriptor per point Pi is:
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Once this 132-dimensional descriptor is known for each point Pi, we train an
RF classifier with a uniform class prior. All classification parameters, such as
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Figure 6.3: Qualitative results of the facade labeling step. A challenging
subset of RueMonge2014, dubbed Sub28 in [143]. Interestingly, the 2D and
3D-based methods (third vs. fourth row) outperform each other for different
parts of the scene, while their combination (fifth row) has the best performance.
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scales of the SI descriptor (0.15, 0.3, 0.45), number of trees (100) and minimum
leaf size (30) in the RF are determined using grid search on out-of-bag (OOB)
error estimates. The effect of these parameters and the impact of each utilized
3D descriptor on classifier performance are shown in Figure 6.2.

6.3.2 Facade Splitting

Given the point cloud P = {Pi} and its labeling results L = {Li} with the
best class label Li assigned to each individual 3D point Pi, a novel method for
separating individual facades is proposed. The underlying issue with previous
work is that typical features such as height or appearance are too weak, especially
in strongly regulated urban scenes, such as Haussmannian architecture in Paris.

In this work we propose a facade separation method that exploits semantic
nuances between facades. Despite the strong similarity of buildings, even in
Haussmannian style, each facade shows individual characteristics such as window
heights, balcony placements and roof lines. This knowledge is only available
after performing semantic classification.

In order to separate facades into individual units, we vertically split the dominant
facade plane, by posing a labeling problem that assigns sites S = {si} (single
connected components within the classified point cloud P ) to facade groups
G = {gi} is defined as:

E(S) =
∑

Θ(gi, si) + λ ·
∑

Ψ(si, sj) (6.1)

where Θ(gi, si) determines the cost of assigning a site si to a facade group gi,
equal to its distance in 1D location. The pairwise term Ψ(si, sj) encourages
splits where there is decreased likelihood of crossing any architectural elements,
such as windows or balconies. It aggregates the class labels in vertical direction
and estimates a ratio between wall class (where the split should occur) and
structural classes (such as windows, balconies, etc. where no split should be
selected).

Each facade group gi is a label which defines a candidate layout for an individual
facade. It is determined by clustering features F capturing the differences
between semantic elements. These features are statistical measurements defined
as

Fi = [δT
i , AT

i , MajorT
i , MinorT

i , verthist(Ci)] (6.2)

where for each connected component, δ is the position along the dominant
plane, A is its area, Major, Minor are the lengths of its axes and verthist is
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the histogram over the class labels above and below this connected component.
These features are clustered using Affinity Propagation [52] and determine the
facade groups G.

The final assignment is optimized with a multi-label graphcut [21, 20, 92], which
assigns all original 3D points P with respect to their distance to one of the
facade groups G, and the final labeling determines the number of facades.

For intermediate evaluation, we manually annotate the splits between individual
facades, and evaluate how many facades were correctly separated. The achieved
accuracy in terms of correct facade-wise classification is 95.5% where all but
3 facades have at least 97% 3D points assigned correctly. A baseline using
F=RGB+intensity gives only 78% overall, failing to split four and oversplitting
additional five.

6.3.3 Weak Architectural Principles (WP)

In order to generate a more structured final output, and building upon the
2-dimensional weak architectural principles introduced in Chapter 5, we use
generic principles such as alignment, symmetry, co-occurrence, and vertical
region order. The main idea of this approach is that some principles are used to
discover the candidate objects in the facade, while others score the elements or
modify their position and size.

3D Principles (3DWP)

We propose a generalization of the 2D architectural principles to 3D with several
major differences. Unlike Chapter 5, where initial elements are determined with
a simple connected component analysis on a binary 2D image, we discover them
in a robust way directly in the point cloud. Second, since our approach works
with 3D boxes instead of bounding rectangles, our approach implicitly models
the z-position (along the facade normal) and depth of each facade element.
Furthermore, we generalize the alignment rule to synchronize same-class elements
in the z-direction. This allows us to naturally model facade configurations with
inset windows or extruding balconies. As will be demonstrated later in the
text, this particular choice of 3D principles allows us to use a simple and fast
optimization framework.

Our goal is to find the optimal set of boxes (B) which (1) fits well to the initial
data labeling (L); (2) has well aligned boxes; (3) does not contain overlapping
elements of the same class; (4) satisfies element co-occurrence, e.g. a balcony
should not appear if there is no window above it. We formulate this optimization
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Figure 6.4: Exemplar facade split projected into 2D for visualization (top to
bottom): 3D colored points, 3D classification, group prototypes (here windows),
unary/pairwise costs and final 1D group assignment. Note the high similarity
in appearance and height.
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as follows:

arg min
B∈Bsuper

(
fdata(B, P, L) + falign(B)

)
.

s.t. coverlap(B) = 0

cco-occ(B) = 0

(6.3)

Generating the initial set of boxes. From our initial point cloud labeling
L, we generate an over-complete set of boxes Bsuper. Note that in Sec. 5.6.1,
the initial elements are generated by finding connected components in a labeled
2D image, followed by fitting of minimal bounding rectangles. Performing
the similar task in 3D raises two main issues. First, we cannot use the 4- or
8-connected neighborhood to discover the connected components, as we deal
with 3D points in continuous space. Second, the 2D approach often generates
too large elements, e.g. in presence of significant noise, when distinct facade
elements appear connected in L.

In the 3D case, for each object class c (window, balcony, door) we create a
binary labeling Lc, where Lci = 1 if Li = c and 0 otherwise. We extract the
initial facade elements from the labeling Lc by creating a K-nearest neighbor
graph in 3D (K = 7 in our experiments), and discarding edges that connect
nodes labeled with 1 and 0. We fit a 3D box to each component, and add it to
Bsuper.

However, since the labeling Lc can be quite noisy, we clean it up with the
generalization of the morphological opening (erosion followed by dilation)
operator to 3D. The erosion operator changes the label of a point to 0 if
any of its K nearest neighbors is labeled with 0, while the dilation performs
the opposite process. By varying the number of subsequent erosions and
dilations, we generate multiple overlapping proposals for each facade element,
with different degrees of smoothing – all used to augment Bsuper.

Finally, we use the symmetry principle to add elements which are potentially
missing in the scene. We detect the main vertical symmetry plane of the facade,
mirror all elements and add them to Bsuper.

Best set of boxes. We pose the search problem in Eq. 6.3 as an integer
quadratic program (IQP) with linear constraints. Each box Bi ∈ B is assigned
an indicator variable xi ∈ x, which is equal to 1 if the box is selected in the set,
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0 otherwise. The IQP is formulated as follows:

min wT
datax + 1

2xTQalignx

s.t. Coverlapx ≤ 1

Cco-occx ≥ 0

xi ∈ {0, 1}

(6.4)

For each box Bi with label c, we set the data term wdata(i) = |L(Bi) =
c| − |L(Bi) 6= c|, and then normalize wdata to sum up to unity.

The alignment term is defined for pairs of boxes Bi and Bj . We distinguish 6
types of alignment: top and bottom, left and right, back and front. For each
type, two boxes are aligned if the corresponding edges of the boxes are within a
threshold. We set this threshold equal to half the median size of objects of the
same class, in the appropriate direction.

Qalign(i, j) =
{
−a if Bi and Bj are aligned a times
0 otherwise.

(6.5)

To make sure that the resulting quadratic program is convex, we make the
resulting matrix diagonally dominant, and therefore positive semi-definite:

Qalign(i, i) =
∑
j,j 6= i

|Qalign(i, j)| (6.6)

Every row of the overlap constraint matrix Coverlap ensures that a pair of
same-class overlapping boxes (IOU>0) Bi and Bj cannot be selected at the
same time:

xi + xj ≤ 1 (6.7)

The co-occurrence principle prohibits balconies without at least one window on
top:

Cco-occ(i, j) =


−1 if i = j and Bi is a balcony.
1 if Bi is a balcony and

Bj is an adjacent window.
0 otherwise.

(6.8)

The optimization in Eq. 6.4 is solved using the MOSEK mixed-integer solver
via the CVX software package [68].



EVALUATION 117

Figure 6.5: Estimated 3D facades. All reconstructed facades in the
RueMonge2014 test set. Our method performs automatic separation of facades
and analyzes the 3D structure of facade elements. The final results are obtained
by fitting 3D boxes to the discovered objects and texturing with ortho-images.
Please zoom in to view 3D structure, or consult the detailed view in Fig. 6.8.

Locations and sizes of boxes. The optimization of Eq. 6.3 does not modify
the size or location of the selected boxes. We generalize the alignment principle
from Sec. 5.6.2 to perform alignment in three main directions of the facade.
The objective function is defined as the sum of Tukey’s bounded influence
functions [215] evaluated on absolute differences of bounding box edge positions,
for all pairs of boxes. We solve for the box locations and sizes using a Quasi-
Newton optimization approach. In essence, this optimization “snaps” the
borders of nearly-aligned elements to common alignment lines. Unlike its 2D
counterpart, this process allows the creation of depth-aligned windows and
balconies.

Ortho + 2D Principles (2DWP)

As mentioned earlier, the method presented in Sec. 5.6 requires rectified 2D
images and labelings as input to its third layer. In order to use it in our
3D scenario, we create a “virtual 2D” input for each facade. We start by a
least-square plane fit to the 3D points of the facade. The points P and their
labels L are then projected onto the plane. The ortho labeling is generated
by uniformly sampling points on this plane, and finding the nearest projected
point for each pixel. The downside of this method is that useful 3D information
is lost in the process. Furthermore, the processing time is increased due to the
overhead of 2D-3D projections.

6.4 Evaluation

We consider three tasks pertaining to facade labeling: point cloud labeling,
image labeling, and facade parsing. In all experiments, to evaluate the semantic



118 SEMANTIC SEGMENTATION OF 3D URBAN SCENES

segmentation results, we use the PASCAL-VOC IoU segmentation accuracy,
averaged per class. Qualitative results on point clouds are shown by overlaying
the labeling on the colored point cloud, see Fig. 6.8.

Datasets. We perform exhaustive evaluations on the only publicly available,
street-side facade dataset RueMonge20142 introduced by Riemenschneider et
al. [143], which contains a 700-meter-long street in Paris. This is of particular
interest for two main reasons. First, the facade separation problem is a very
difficult one due to the homogeneous architectural appearance. Second, to
best of our knowledge, none of the other datasets [23, 59, 103, 150] provide
such dense labels in 3D. As we focus on point cloud labeling, we consider only
the vertices from RueMonge2014 mesh, which we name ‘Low-res’, since it was
generated by 2.7x subsampling the original, ‘High-res’ mesh produced by the
CMPMVS algorithm [83] in 270 minutes. For reconstruction speedup, one could
use methods from Bodis-Szomoru et al. [14, 15] who densely reconstruct the
scene on a single core in roughly two seconds/image (14 min), or the commercial
version of the CMPMVS algorithm [24] which reconstructs the same scene on
the GPU in only 4 minutes. For completeness, we evaluate our 3D classifier on
two additional point clouds: sparse ‘SfM’ (using VisualSFM [203], 13 min) and
semi-dense ‘PMVS’ (using [55], 21 min).

6.4.1 Point Cloud Labeling

We compare several approaches for 3D point cloud labeling, see Table 6.1 and
Fig. 6.3. First, as the example of a purely-3D approach, we use our initial
Random Forest classifier (RF+MAP). The result is then smoothed with a 3D
Conditional Random Field (RF+3D CRF). The Potts model-based pairwise
potentials are defined over a 4-nearest neighbor graph of the point cloud.

This result is compared with state-of-the-art 2D facade labeling introduced in
Chapter 5. Its first two layers will be referred to in this section as L1 and L2,
respectively. The resulting semantic segmentation of images is projected and
aggregated in the point cloud by either majority voting from different cameras,
or using the aforementioned 3D CRF.

Finally, we combine the results of 3D and 2D methods using the CRF, resulting
in a higher performance at the cost of evaluation time. We compare these
hybrid methods to the recent approach that combines 2D and 3D for facade
labeling [143], and observe significant improvement in quality. It is worth noting
that the joint 2D+3D approach gives the best performance but at a 26× lower

2http://varcity.eu/3dchallenge/

http://varcity.eu/3dchallenge/
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Point cloud labeling Low-res PCL High-res PCL
Method Accuracy Timing Accuracy Timing

3D RF+MAP 51.42 15min 55.65 76minRF+3D CRF 52.09 56.39

2D

L1+majority vote 54.68
302min

53.37
305minL1+MAP 55.35 54.06

L1+3D CRF 55.72 54.30
L2+majority vote 56.10

382min
54.74

385minL2+MAP 55.95 54.71
L2+3D CRF 56.32 54.95

3D+2D

[143] 42.32 15min 39.92 23min
RF+L1+MAP 60.16 317min 61.15 381minRF+L1+3D CRF 60.05 61.21
RF+L2+MAP 60.44 397min 61.31 461minRF+L2+3D CRF 60.43 61.39

Table 6.1: Semantic segmentation of point clouds: accuracy for various methods
on the RueMonge2014 dataset. We report the results on the low- and high-
resolution point clouds as PASCAL IOU accuracy in %. The evaluation time
includes feature extraction, classification, and optional 3D projection.
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Figure 6.6: PCL labeling: accuracy vs. test time for two different point cloud
resolutions generated by CMP. We also show the performance of our RF method
on the point clouds generated by SfM and PMVS. The number of vertices per
cloud is shown in parentheses.
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Image labeling Low-res PCL High-res PCL
Method Accuracy Timing Accuracy Timing

3D RF+MAP 52.85 21min 57.82 85minRF+3D CRF 53.22 58.13

2D L1 54.46 299min 54.46 299min
L2 57.53 379min 57.53 379min

3D+2D

[143] 41.34 15min n/a n/a
RF+L1+MAP 61.58 324min 63.08 390minRF+L1+3D CRF 61.27 62.87
RF+L2+MAP 61.95 404min 63.32 470minRF+L2+3D CRF 61.73 63.13

Table 6.2: Semantic segmentation of street-side images: accuracy for various
methods on the RueMonge2014 dataset. The results are shown for the test
set of 202 test images. The 2D results are obtained by running the first two
layers (L1 and L2) of the 3Layer method [113], and projecting the point cloud
classification onto the original images. The PASCAL IOU accuracy is shown in
% over the image domain.

speed and with a modest 8% accuracy gain over the 3D-only approach. The
high-res point cloud increases the performance of the 3D-only classifier by 4%
but at the cost of a 5× lower speed.

6.4.2 Image Parsing

Comparison to 2D methods is additionally performed in the image domain, by
back-projecting our point cloud labeling L onto the perspective images, and
filling out gaps with nearest-neighbor interpolation, see Table 6.2. In the image
domain, a similar behavior is observed, as the 3D-only approach achieves the
highest speed and competitive results to the 2D-only classification, which is only
4% better but 18× slower. The complementary combination of 2D and 3D again
achieves top performance (63.32%), outperforming the existing method [143] by
over 20%.

6.4.3 Facade Parsing

We compare the proposed 3D version of the weak architectural principles (3DWP)
with its 2D counterpart (2DWP) from Chapter 5, see Table 6.3. The evaluation
is performed in the original point cloud, by concatenating the individual facade
labelings (3D) or back-projecting the labeled ortho-images (2D).
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Figure 6.7: Image labeling: accuracy vs. test time for two different PCL
resolutions.

Facade parsing Low-res PCL High-res PCL
Method Input classification Accuracy Timing Accuracy Timing

2DWP
3D: RF+3D CRF 49.59

802min
49.54

885min2D: L1+3D CRF 54.04 53.29
3D+2D: RF+L1+3D CRF 58.81 58.40

3DWP
3D: RF+3D CRF 52.24

8min
56.35

10min2D: L1+3D CRF 55.39 53.56
3D+2D: RF+L1+3D CRF 60.83 59.89

Table 6.3: Semantic segmentation of street-side point clouds using weak
architectural principles (WP) on the RueMonge2014 dataset. We compare
the original 2D version applied on virtual ortho-images, and our proposed 3D
method, for the three representative classifiers from Table 6.1. The PASCAL
IOU accuracy is shown in %. The test time does not include the time needed
for the initial point cloud classification.
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We test three different classifiers as input to this stage, based on features from
3D, 2D and 2D+3D. Our 3DWP approach outperforms its 2D counterpart in
all cases except when using the 2D-only input. However, the most obvious
improvement is the speed of our IQP optimization compared to the GA-based
approach in Sec. 5.6.1.

Overall, top performance is achieved by a combination of 2D and 3D features
and pure 3D weak architectural principles in 325 minutes (317 for initial labeling
+ 8 weak principles). The fastest, yet still competitive performance uses only
3D features and 3D weak principles, which requires roughly 20 minutes from
start (point cloud) to end (textured 3D models) for the full street.

A visual comparison of the stages is shown in Fig. 6.8, including the original
color point cloud, initial classification, the result of 3D weak architectural
principles using the best classifier, and final geometry-correct textured models.
For an overview of all facades reconstructed in 3D, see Fig. 6.5.

6.5 Conclusion

This chapter proposed a new approach for 3D city modeling using 3D semantic
classification, 3D facade splitting, and 3D weak architectural principles. The
proposed method produces state-of-the-art results in terms of accuracy and
computation time. The results indicate that 3D-only classification is feasible
and leads to significant speedups.

Overall, the benefit of processing all stages in 3D enables us to better exploit
the single domain and advantages of combined depth information. A possible
extension to this system would be to use feedback to the original SfM point
cloud creation, in order to join the two processes.
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Figure 6.8: Qualitative results. We show examples of automatically obtained
facades using our method. From top to bottom: initial colored point cloud
(Low-res), initial classification, estimated boxes using weak 3D principles; and
–as we suggested that 3D semantic interpretation can be used to estimate 3D
shape– automatically generated 3D model of the facades textured by projecting
ortho images.





Part III

Grammar Learning

125



Chapter 7

Bayesian Grammar Learning

So far, we have demonstrated the usability of procedural grammars for building
reconstruction (Chapter 4), and ways of obtaining reasonable bottom-up
reconstructions in the absence of pre-written grammars (Chapters 5 and 6). Now
we focus our attention on the core problem, which is inferring these grammars
from data at hand. Traditional grammar-based approaches are limited in scope,
as they require a human expert to write grammars for each encountered building
style. Instead, we propose to learn these grammars from data. The approach
presented in this chapter1 allows us to automatically learn a special kind of
procedural grammars from a set of labeled building facades. Namely, we learn
two-dimensional attributed stochastic context-free grammars (2D-ASCFGs).
The basic technique used to achieve this is Bayesian Model Merging, originally
developed in the field of natural language processing, which we extend to the
domain of two-dimensional languages. Given a set of ground-truth labeled
facade images, we induce a grammar which can be sampled to create novel
instances of the same building style. In addition, we demonstrate that our
learned grammar can be used for parsing existing facade imagery. Experiments
conducted on the dataset of Haussmannian buildings in Paris show that our
parsing with learned grammars not only outperforms bottom-up classifiers but
is also on par with approaches that use a manually designed style grammar.

1This chapter is based on the joint work with Luc Van Gool, published in CVPR 2013 [114].
Anđelo Martinović is the first author.
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Figure 7.1: “Somewhere in Paris”: a street with buildings sampled from our
induced grammar.

7.1 Introduction

Many existing approaches use some form of shape grammars as higher-order
knowledge models for reconstruction of buildings. Vanegas et al. [195] used a
simple grammar for buildings that follow the Manhattan world assumption. A
grammar was fitted from laser-scan data in [189]. An approach using reversible
jump Markov Chain Monte Carlo (rjMCMC) for fitting split grammars to data
was described in [145]. Teboul et al. [180] presented an efficient parsing scheme
for Haussmannian shape grammars using Reinforcement Learning. We have
also proposed in Chapter 4 an approach that combines shape grammars with
object detectors in order to faithfully reconstruct Greek Doric temples.

However, all of the methods mentioned above share a common drawback. They
assume that a manually designed grammar is available from the outset. This is
a serious constraint, as it limits the reconstruction techniques to a handful of
building styles for which pre-written grammars exist. Creating style-specific
grammars is a tedious and time-consuming process, which is usually performed
only by a few experts in the field. So, a natural question arises: can we learn
procedural grammars from data?

So far, the research in the field of general IPM has been limited to a small
number of approaches. Learning L-systems from synthetic 2D vector data was
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tackled in [166]. Applications of general IPM in urban modelling started with
Aliaga et al. [4], who presented an interactive method for extracting facade
patterns from images. Bokeloh et al. [17] learned deterministic shape grammar
rules from triangle meshes and point clouds. Attribute graph grammars [74]
were presented as a method of top-down/bottom-up image parsing, though
restricting the detected objects in scenes to rectangles.

In the field of formal grammar learning, a famous conclusion of Gold [64] states
that no superfinite family of deterministic languages (including regular and
context-free languages) can be identified in the limit. However, Horning [79]
showed that the picture is not so grim for statistical grammar learning, and
demonstrated that stochastic context-free grammars (SCFGs) can be learned
from positive examples. Currently, one of the popular methods for learning
SCFGs from data is Bayesian Model Merging [170], which makes the grammar
induction problem tractable by introducing a Minimum Description Length
(MDL) prior on the grammar structure. This approach was recently applied for
learning probabilistic programs [82] and design patterns [176].

7.2 Overview

Inspired by the aforementioned success stories of Bayesian Model Merging
outside computer vision, we propose a novel approach of inducing procedural
models, particularly split grammars, from a set of labeled images. We focus
our discussion on facade modeling, since facades are mostly two-dimensional,
and exhibit a logical hierarchy of elements.

The overview of our grammar learning approach can be seen in Fig. 7.2. The
input to our system is a set of facade images, which are semantically segmented
into classes such as walls, windows, etc. In the first step we create a stochastic
grammar which generates only the input examples with equal probabilities.
However, we want to find a grammar that can also generalize to create novel
designs. We formulate this problem as a search in the space of grammars, where
the quality of a grammar is defined by its posterior probability given the data.
As described in Sec. 7.5, this requires an optimal trade-off between the grammar
description length (smaller grammars are preferred) and the likelihood of the
input data. The latter is obtained by parsing the input examples with the
candidate grammar.

Previous work has shown that image parsing with a known set of grammar
rules is a difficult problem by itself [144, 182]. On the other hand, our grammar
search procedure will need to evaluate a huge number of candidate grammars
in order to find the best one, as will be shown further in the text. This means
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Figure 7.2: Overview of our Bayesian grammar learning approach.

that we have to be able to parse the input examples in a very short time,
lest the grammar search last indefinitely. Different authors have tackled this
curse of dimensionality during parsing in different ways: assuming that the
building exhibits a highly regular structure [126], using approximate inference
such as MCMC [145], or exploiting grammar factorization [182]. The work by
Riemenschneider et al. [144] has shown that it is possible to perform exact image
parsing using dynamic programming if the image is reduced to an irregular
lattice (a grid structure). This approach reduces the effective dimensionality of
the problem, while not sacrificing much of the quality.

Following their example, we transform all of our input images into irregular
lattices, casting our grammar search procedure into a lower-dimensional space.
In this space we use our own, modified version of the Earley-Stolcke parser [170],
a technique from natural language processing adapted to parse 2D lattices
instead of 1D strings. This dimensionality reduction enables the grammar
search procedure to run within a reasonable time. Finally, in order to perform
image parsing, the induced grammar is cast into the original space. The resulting
stochastic, parameterized grammar can either be used as a graphics tool for
sampling building designs, or as a vision tool to alleviate image parsing of actual
buildings.

The contributions of this chapter are:

1. A novel approach for inducing procedural split grammars from data. To
the best of our knowledge, we are the first to present a principled approach
for learning probabilistic two-dimensional split grammars from labeled
images.

2. A generalization of the Earley-Stolcke SCFG parser to two dimensional
lattices.
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3. An adapted rjMCMC parser in the style of Talton et al. [175] for image-
scale parsing.

4. An experimental evaluation suggesting that learned grammars can be as
effective as human-written grammars for the task of facade parsing.

7.3 2D-ASCFGs

We define a two-dimensional attributed stochastic context-free grammar (2D-
ASCFG) as a tuple G = (N,T, S,R, P,A) , where N is a set of non-terminal
symbols, T a set of terminal symbols, S the starting non-terminal symbol or
axiom, R a set of production rules, {P (r), r ∈ R} a set of rule probabilities and
{A(r), r ∈ R} a set of rule attributes.

Every symbol is associated with the corresponding shape, representing a
rectangular region. Starting from the axiom, production rules subdivide the
starting shape either in horizontal or vertical directions. We define the set
R as a union of horizontal and vertical productions: R = Rh ∪ Rv. These
productions correspond to standard horizontal and vertical split operations in
split grammars (see Sec. 2.1.4). A production is of the form X → λ, where
X ∈ N is called the left-hand-side (LHS), and λ ∈ (N ∪ T )+ is called the
right-hand-side (RHS) of the production.

For every production we define P (X → λ) as the probability that the rule is
selected in the top-down derivation from the grammar. For the grammar to
be well-formed, the productions with X as LHS must satisfy the condition∑
λ P (X → λ) = 1. We additionally associate each grammar rule r with a set of

attributes A(r) = {αi}. The elements of a single attribute are the relative sizes
of the RHS shapes in respect to their parent shape, in the splitting direction:
αi = {s1, ..., s|λ|},

∑
i si = 1. These relative sizes sum up to unity because RHS

shapes always fill the entire shape of their parent.

We denote by τ a parse tree from the grammar, rooted on the axiom, its interior
nodes corresponding to non-terminal symbols, and its exterior nodes to terminal
symbols. The parse tree is obtained by applying a sequence of rules on the
axiom and non-terminal nodes. A derivation from the grammar consists of the
parse tree and the selected attributes at each node: δ = (τ, α). The probability
of a single derivation is the product of all rule probabilities selected at each
node s of the parse tree: P (δ) =

∏
s∈δ P (rs). The set of terminal nodes of a

parse tree defines a lattice over an area. A lattice is a rectangular tesselation of
2D space, exactly filling the shape of the axiom. We define the likelihood of the
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grammar G generating a lattice l as L(l|G) =
∑
δ⇒l P (δ), where we sum over

the probabilities of all derivations that yield a particular lattice.

7.4 Bayesian Model Merging

To cast our grammar learning problem as an instance of Bayesian Model Merging,
we need to define several methods:

• Data incorporation: given a body of data, build an initial grammar
which generates only the input examples.

• Model merging: propose a candidate grammar by altering the structure
of the currently best grammar.

• Model evaluation: evaluate the fitness of the candidate grammar
compared to the currently best grammar.

• Search: use model merging to explore the grammar space, searching for
the optimal grammar.

7.4.1 Data Incorporation

We start with a set of nf facade images, with each pixel labeled as one of the nl
terminal classes (window, wall, balcony, etc.) As already mentioned in Sec. 7.1,
grammar induction would be infeasible in the image space due to the curse
of dimensionality. To mitigate this issue, all input images are converted into
lattices following an approach similar to Riemenschneider et al. [144]. Every
rectangular region in the resulting two-dimensional tesselation of the image is
labeled with the majority vote from the corresponding pixel labels.

For each lattice in the input set, we create an instance-specific split grammar,
with terminal symbols corresponding to image labels. Non-terminal productions
are created by alternatively splitting the image in horizontal and vertical
directions, starting with the latter. All production probabilities are set to 1;
all attributes are initialized to the relative sizes of right-hand side elements.
For example, the first production splits the axiom into horizontal regions
represented by newly instantiated non-terminals and parametrized by their
height: S → Xi . . . Xn, p = 1, A = {{h(Xi), . . . , h(Xn)}}, where the rule
probability p is initialized to 1, but is allowed to change in the model search.
The procedure is stopped at the level of a single lattice element, where we
instantiate lexical productions, i.e. productions with a single terminal on the
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RHS: X → label, p = 1, A = {{1}}. Lexical productions remain deterministic,
as they only label the entire shape of the parent with the given terminal class.

Now we have a set of deterministic grammars Gi, each producing exactly one
input lattice. The next step is to merge them into a single grammar by setting all
of their axioms to the same symbol and aggregating all symbols and productions:
G0 = (∪Ni,∪Ti, S,∪Ri,∪Pi,∪Ai). The probabilities of the rules starting from
the axiom are changed to 1/nf , which means that the grammar G0 generates
each of the input examples with the same probability.

7.4.2 Merging

A new grammar is proposed by selecting two non-terminals X1 and X2 from
the current grammar and replacing them with a new non-terminal Y . This
operation has two effects on the grammar. First, all the RHS occurrences of X1
and X2 are replaced by Y :

Z1 → µ1X1λ1 merge
99K

Z1 → µ1Y λ1

Z2 → µ2X2λ2 Z2 → µ2Y λ2

where µ, λ ∈ (N ∪ T )+. If Z1 = Z2, µ1 = µ2, λ1 = λ2, then the two resulting
productions are merged in one. In that case, the attribute set of the new
production is defined as the union of the attributes of the old productions.

Second, all the productions where X1 and X2 appear on the LHS are replaced
with Y , as well:

X1 → λ1 merge
99K

Y → λ1

X2 → λ2 Y → λ2

Again, if λ1 = λ2, only one production is created. If we create a production
Y → Y , we delete it from the grammar.

The merging operation basically states that in the resulting grammar two
previously different symbols may be used interchangeably, although with
different probabilities. The only restriction that we place on the merging
operations is that X1 and X2 have to be “label-compatible”, meaning that the
sets of terminal symbols reachable from both nodes have to be equal. In this
way we prevent nonsensical merges, e.g. merging two non-terminals representing
sky and door regions, respectively. We also improve the speed of the inference
procedure by restricting the search space.
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7.4.3 Evaluating Candidate Grammars

The goal is now to find the grammar model G that yields the best trade-off
between the fit to the input data D and a general preference for simpler models.
From a Bayesian perspective, we want to maximize the posterior P (G|D), which
is proportional to the product of the grammar prior P (G) and a likelihood
term P (D|G). We can decompose the grammar model into a structure part
GS (representing grammar symbols and rules) and the parameter part θg(rule
probabilities): G = (GS , θg).

The model prior P (G) then factorizes to P (Gs)P (θg|Gs), the product of priors
over structure and parameters. To define the prior over the grammar structure
we follow a Minimum Description Length (MDL) principle. The grammar’s
description length DL(Gs) is calculated by a simple encoding of productions,
where every occurrence of a non-terminal in a production contributes with log |N |
bits, |N | being the total number of non-terminals in the grammar. Then, the
structure prior is defined as P (Gs) = e−DL(Gs). We use symmetrical Dirichlet
parameter priors, as all productions with the same LHS form a multinomial
distribution.

Stolcke [170] has shown that in order to calculate the posterior over the model
structure P (Gs|D) ∝ P (Gs)P (D|Gs), one needs to integrate over the parameter
prior:

P (D|Gs) =
∫
θg

P (θg|Gs)P (D|Gs, θg)dθg (7.1)

Fortunately, we can approximate this integral with the ML estimate of P (D|Gs)
by using the Viterbi assumption. This basically means that we assume that
every input sample is generated by a single derivation tree of the grammar. The
likelihood of a single input example is then the product of all rule probabilities
used in the Viterbi derivation. Since Viterbi derivations and rule probabilities θg
depend on each other, we use the Expectation-Maximization procedure to find
the optimal values for θg. In the E-step, starting from an estimate for θg, the
expected usage counts ĉ(X → λ) for each rule are calculated. This is done by
finding Viterbi derivations for all input data and counting the number of times
every rule was used. In the M-step, the rule probabilities θ̂g are re-estimated
using the formula:

P̂ (X → λ) = ĉ(X → λ)∑
µ ĉ(X → µ) (7.2)

where µ iterates over all possible LHS choices for X. The process is iterated
until convergence.
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7.4.4 2D Earley Parsing

In order to find the Viterbi derivations of each input lattice in the E-step, we
use a modified version of the Earley-Stolcke parser [170], which we extended
from parsing strings to parsing 2D lattices. To the best of our knowledge, we
are the first to create an Earley parser for two dimensional SCFGs. We provide
its implementation details in the Appendix A.

Using Earley’s parser instead of more common CKY parsing [211] has a number
of advantages. Its worst-case complexity is cubic in the size of the input, but it
can perform substantially better for many well-known grammar classes. Another
appealing property is that it places no restrictions on the form of the grammar.
This sets us apart from previous work which either requires the grammar to
be in Chomsky Normal Form [180], or that the rules have to satisfy optimal
substructure property [144].

7.4.5 Search in Model Space

In order to define a flexible search procedure, we modify the posterior calculation
with a global prior weight w, which gives us control over the balance between
the likelihood and the prior. Utilizing the Boltzmann’s transformation, we
transform the posterior maximization into an energy minimization:

E(G|D) = −w log P (G)− log P (D|G) (7.3)

By setting w to a low value, we decrease the influence of the prior, thereby
making the search procedure stop earlier. For larger values of w, we increase
the tendency to generalize beyond the data. The influence of global prior weight
w on induced grammar size is shown in Table 7.1.

Starting from the initial grammar, we follow a greedy best-first approach: in
each iteration, every pair of non-terminals is considered for merging, and all
of the candidate grammars are evaluated. The candidate with the minimum
energy is accepted if it has lower energy than the current grammar. The rule
probabilities are learned in each step using the EM procedure presented in 7.4.3.

The described method produced satisfactory results in our experiments. Of
course, one may imagine more intricate ways of searching through the grammar
space, e.g. by using a beam search or a random walk algorithm. We leave this
for future work.
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Initial grammar G0 Induced, w = 0.3 Induced, w = 1.0
|N | 126.8± 6.61 26.6± 0.89 14± 0.0
|Rh| 121.8± 6.61 65± 6.70 27.8± 2.68
|Rv| 33± 0.0 15.6± 2.60 11± 1.41

Table 7.1: Size comparison: initial grammar created by grammar incorporation,
and two inferred grammars with prior weights of w = 0.3 and w = 1.0.

7.4.6 Final Model

The grammar resulting from the search procedure is still limited to the lattice
space. To cast the grammar back in the image space, we perform two post-
processing steps.

First, we collapse sequences of the same non-terminal symbol in a production
to a single symbol with correspondingly modified attributes, for example:

X → λY Y µ Collapse
99K

X → λY µ

A = {{s1, y1, y2, s2}} A = {{s1, y1 + y2, s2}}

Second, for every production p = (X → λ1 . . . λk), we fit a (k − 1)-variate
Gaussian distribution φ(A) = N (µ̄, Σ̂) to the set of its attributes A(p) =
{α1 . . . αn}:

µ̄ = 1
n

n∑
j=1

αj (7.4)

Σ̂ = 1
n− 1

n∑
j=1

(αj − µ̄)(αj − µ̄)T (7.5)

This enables us to sample productions with continuous attributes, by sampling
directly from the estimated size distribution. Note that every production with
the RHS size of k has k − 1 degrees of freedom. If k = 1, we are dealing with a
lexical production, for which no distribution is estimated since they have the
relative size of 1 by definition.

7.5 Parsing in Image Space

The grammar induced in the previous section is now amenable for image-scale
parsing. However, two main problems arise when trying to design an efficient
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optimization method. First, we cannot use exact methods such as dynamic
programming as we allow our attributes to take on continuous values. Second,
due to the stochastic nature of the grammar, the number of attributes can
change. In order to tackle the first issue, we use a Markov Chain Monte
Carlo approach, which reduces the optimization to sampling. However, as
the MCMC operates over a fixed-dimensional space, we must consider its
extension in the form of Reversible jump MCMC (rjMCMC). Talton et al. [175]
presented a rjMCMC-based method to parse parametric, stochastic, context-free
grammars, given a high-level specification of the desired model. However, their
method requires that only terminal symbols of the grammar contain descriptive
continuous parameters. In contrast, we present a modified version of [175] that
lifts this constraint. We also use a different likelihood computation, utilizing a
pixel-based classifier to calculate the terminal merit.

7.5.1 Grammar Parsing via rjMCMC

For a given test image, our task is to find the derivation from the grammar that
has the best fit to the image. Similarly to Sec. 7.4.3, we define a posterior of
the derivation δ given the image:

P (δ|I) ∝ P (I|δ)
∏
s∈δ

P (rs)
∏
s∈δ

φ(A(rs))︸ ︷︷ ︸
P (δ)

(7.6)

where φ is defined in Sec. 7.4.6. Note that we have factorized the prior into
a rule and attribute term over all non-terminal nodes s of the derivation tree.
We can ignore the normalizing constant for the purposes of maximization and
define the energy through Boltzmann’s transformation:

E(δ|I) = −log P (I|δ)−
∑
s∈δ

log P (rs)−
∑
s∈δ

log φ(A(rs))

Eδ = Eimageδ + Eruleδ + Eattributeδ (7.7)

The energy that we want to minimize is composed of three terms. The rule term
is calculated by summing up the negative log probabilities of all rules rs selected
in the derivation. The attribute term measures the discrepancy between the
proposed attributes and the expected values of attribute distributions estimated
in Sec. 7.4.6. To calculate the image term, we use the Random Forest pixel
classifier [182], which outputs the label probability distribution PRF for each
pixel in the image.

Eimage =
∑
t∈δ

∑
xi∈t
−log PRF (lt|xi) (7.8)
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Figure 7.3: Diffusion move.

The sum is defined over all terminals t in the derivation tree. Integral images
are used to rapidly calculate the inner summation of pixel energies over the
rectangular region of each terminal symbol. By making this choice of image
support, we can make a direct comparison to the approach of Teboul et al. [180].

Search. We utilize the standard rjMCMC formulation with Metropolis-Hastings
(MH) update [69]. The chain is initialized with a random derivation δ = (τ, α)
from the grammar. We define α as a concatenation of all selected attribute
elements (i.e. relative RHS sizes) in a pre-order traversal of tree τ . To ease the
discussion, we will refer to α as the parameter vector.

In every MH iteration, the chain is evolved by performing either a dimension-
preserving “diffusion” move, or a dimension-altering “jump” move [175].

In the diffusion move, a random node hk is selected in the tree. The parameters
corresponding to that node in the tree are then resampled from independent
Gaussian proposal distributions. The parameters at other nodes remain
unchanged. The acceptance probability for a move from state x to state
y is given by [26]:

ρx→y = min{1, p(y)q(x|y)
p(x)q(y|x)} (7.9)

In our case, the acceptance probability for a diffusion move from a derivation δ
to δ′ is:

ρδ→δ′ = min{1, p(δ
′|I)q(δ|δ′)

p(δ|I)q(δ′|δ) } (7.10)
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Since the derivation tree remains unchanged, we can write the proposal
distribution q as:

q(δ′|δ) = q(α′|α)

= q(α′nk−1
|αnk−1)q(α′nk−1+1|αnk−1+1) . . . q(α′nk |αnk)

= N (α′nk−1
;αnk−1 , σ

2)·N (α′nk−1+1;αnk−1+1, σ
2) · . . . ·N (α′nk ;αnk , σ2)

= N (αnk−1 ;α′nk−1 , σ
2)·N (αnk−1+1;α′nk−1+1, σ

2) · . . . ·N (αnk ;α′nk , σ2)

= q(αnk−1 |α′nk−1)q(αnk−1+1|α′nk−1+1) . . . q(αnk |α′nk)

= q(α|α′) = q(δ|δ′) (7.11)

The proposal distribution is symmetric, so the acceptance rate simplifies to:

ρδ→δ′ = min{1, P (δ′|I))
P (δ|I) } = min{1, e−(Eδ′−Eδ )} (7.12)

In the jump move, a random node h is selected from the tree, and a new rule
is sampled from all rules applicable to the current LHS. If the size of the RHS
changes, the entire subtree of h has to be rederived. This changes the topology
of the tree, as well as the dimension of the parameter vector.

Following the discussion by Green [70], we denote the current state of the chain
with x = (k, α), where k denotes the current space of dimension nk and α the
current set of parameters. From the current state, a move m is attempted by
sampling a random vector u of rm random numbers from a known density gm.
The new state x′ = (k′, α′) can be constructed with a deterministic function
h such that (x′, u′) = hm(x, u). Here, u′ is a r′-dimensional vector of random
numbers sampled from a known density g′, needed for the reverse move from
x′ to x : (x, u) = h′(x′, u′). The transformation between (x, u) to (x′, u′)
must be a diffeomorphism, i.e. both h and its inverse h′ are required to be
bijections and differentiable. This leads to a ‘dimension-matching’ constraint:
nk + rm = nk′ + r′m.

The acceptance rate for the move m is given by:

ρx→x′ = min{1, π(x′)
π(x)

jm(x′)
jm(x)

g′m(u′)
gm(u)

∣∣∣∣∂(α′, u′)
∂(α, u)

∣∣∣∣} (7.13)

where π represents the target density, jm(x) is the probability that the move
m is attempted at state x, and the last factor represents the Jacobian of the
mapping from (α, u) to (α′, u′).
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Figure 7.4: Jump move.

We shall now fully define the jump move. Since in our case the state of the chain
is defined as δ = (τ, α), the dimension of the initial space nk is the dimension
of the parameter vector α. Let l+ 1 be the index of the first parameter of node
h in the concatenated vector α, d1 the number of parameters in the subtree
τh underneath the node h, and d2 the number of parameters in the subtree τ ′h
after resampling the rule at h. We can define u and u′ as vectors of d2 and d1
uniformly sampled numbers in the interval [0, 1], respectively. In terms of the
previous discussion, rm = d2, r′m = d1, and gm(u) = U [0,1](u).

We can now fully write the mapping hm as follows:

α′i =


αi , i ∈ [1, l]
ui−l , i ∈ [l + 1, l + d2]
αi−d2+d1 , i ∈ [l + d2 + 1,m]

(7.14)

u′i = αi+l , i ∈ [1, d2] (7.15)

The reverse mapping is obtained from Eq. 7.15 by swapping (α, u,m, d2) with
(α′, u′, n, d1). It is clear that by using this mapping, the Jacobian in Eq. 7.13
reduces to unity. Since the proposal distributions gm are uniform on the interval
[0, 1], the third term in Eq. 7.13 also vanishes. We define the probability of the
move jm from δ = (τ, α) to δ′ = (τ ′, α′) as:

j(δ′|δ) = qτ (h)
∏
s∈τ ′

h

P (rs) (7.16)
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where qτ (h) is the probability of selecting a nonterminal h in the tree τ . The
second term evaluates the probabilities of rules selected in the derivation of the
newly derived subtree τ ′h.

Now we can write the final acceptance probability as:

ρδ→δ′ = min{1, P (δ′|I)
P (δ|I)

j(δ|δ′)
j(δ′|δ)}

= min{1, P (δ′|I)
P (δ|I)

qτ ′(h)
∏
s∈τh P (rs)

qτ (h)
∏
s∈τ ′

h
P (rs)

}

= min{1,
P (I|δ′)

∏
s∈τ ′ P (rs)

∏
s∈τ ′ φ(A(rs))

P (I|δ)
∏
s∈τ P (rs)

∏
s∈τ φ(A(rs))

qτ ′(h)
∏
s∈τh P (rs)

qτ (h)
∏
s∈τ ′

h
P (rs)

}

= min{1, qτ
′(h)

qτ (h)
P (I|δ′)

∏
s∈τ ′ φ(A(rs))

P (I|δ)
∏
s∈τ φ(A(rs))

}

= min{1, qτ
′(h)

qτ (h)
e−E

image

δ′ · e−E
attrs
δ′

e−E
image

δ′ · e−E
attrs
δ′
}

= min{1, qτ
′(h)

qτ (h) e
−[(Eimg

δ′
+Eattr

δ′ )−(Eimg
δ

+Eattrδ )]} (7.17)

where we have utilized Eq. 7.6 and Eq. 7.7 to factorize the posterior and to
write the final expression in terms of energies instead of probabilities.

Additional remarks. The chain is guaranteed to converge to the true posterior
as the number of iterations goes to infinity. In practice, the random walk is
stopped after a certain number of iterations. Similar to Talton et al. [175],
we use parallel tempering to improve the speed of convergence. Eight chains
are run in parallel, with temperature quotient between chains set to 1.3. For
jump moves, we employ the technique of delayed rejection: a diffusion move
is attempted immediately after a jump move, and two moves are accepted or
rejected in unison.

7.6 Results

In all grammar learning experiments, the training set was limited to 30 images to
keep the induction time within reasonable bounds. In image parsing experiments,
w is set to 0.3, and rjMCMC search is run for 100k iterations. The process is
repeated 5 times, and the minimum energy chain state is selected as the result.
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Class RF[182] RL[180] Ours [113]
Window 29 62 66 75
Wall 58 82 80 88
Balcony 35 58 49 70
Door 79 47 50 67
Roof 51 66 71 74
Sky 73 95 91 97
Shop 20 88 81 93
Overall 48.55 74.71 74.82 84.17

Table 7.2: Per-class and overall pixel parsing accuracy (in percent) on the ECP
dataset: RF - Random Forest. RL - Manually designed grammar.

7.6.1 Parsing Existing Facades

To show that our grammar learning is usable on real-world examples, we use
the well-established Ecole Centrale Paris (ECP) facade parsing dataset [178],
which contains 104 images of Haussmannian-style buildings. We use the same
5-fold cross-validation experimental setup as in Chapter 5.

In Table 7.2 we compare the accuracies achieved by four different semantic
facade segmentation methods. Each method was evaluated on the ground truth
annotations from [113]. We evaluate the accuracy in terms of class-wise and
total pixel averages. As a baseline, we use the MAP estimation of the Random
Forest classifier [182]. Our approach clearly outperforms the baseline in the
total pixel accuracy and all but one class. Since the RF classifier output is
used in both our method and the RL-based approach of Teboul et al. [179],
our methods are directly comparable. The results that we obtain show that
learned grammars can be just as effective in facade parsing as their manually
written counterparts, even outperforming them in some cases. Some of the
parsed images can be seen in Fig. 7.5 and Fig. 7.7.

To put the results in context, we also show the performance of the state of the
art (SOA) method2 in facade parsing [113]. However, as the SOA method uses
segment classification and object detectors, it is not strictly comparable, since
here we use only pixel classification cues.

7.6.2 Generating Novel Designs

The advantage of having a grammar for a certain style of buildings is that
we can easily sample new designs from it. In this scenario, we generate a

2At the time of writing of this chapter.
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Figure 7.5: Example images from the ECP dataset parsed with our induced
grammar. Note that the output is not restricted to a grid as in [180].

(a) (b)

Figure 7.6: Generating a scene with different grammars. (a) Samples from the
Bayes-optimal grammar. (b) The grammar is over-generalizing due to high
prior weight.

random derivation from the grammar by starting from the grammar axiom
as the first node of the tree. At each node, we sample a rule based on its
probability in the grammar. The relative sizes of the RHS are sampled from the
estimated Gaussian distribution φ. Finally, the terminal symbols are replaced
with instances of architectural elements from a 3D shape and texture library.
We rendered a whole street of buildings sampled from our induced grammar in
CityEngine [42]. The results are shown in Fig. 7.6, where we also demonstrate
the effect of the prior weight parameter w on the generalization capabilities
of the grammar. In Fig. 7.6b, we had intentionally set the prior weight too
high, hence all compatible non-terminal symbols were merged, leading to an
excessively general grammar. With the proper choice of w, we can find a good
trade-off between the data fit and generalization, as shown in Fig. 7.6a.
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7.7 Conclusion

In this chapter we introduced a principled way of learning procedural split
grammars from labeled data. The validity of our approach is demonstrated on
two applications in urban modeling. Our induced procedural grammar not only
generates new buildings of the same style, but also achieves competitive results
in facade parsing, outperforming similar approaches which require a manually
designed set of grammar rules.

In the future, other strategies for the design of grammar merging operators
could be explored, undoubtedly requiring more elaborate search strategies.
Furthermore, more complex shape grammars could be inferred by extending
the Earley parser, which is currently limited to grid-like designs.

The main drawback of the proposed method is that it requires a set of manually
annotated images as input. We argue that labeling a few images of a certain
style and then learning the grammar is a simpler and faster approach than
designing the grammar by hand. Ideally, we want to eliminate that form of
supervision, and introduce robustness to noise. The next chapter therefore
deals with structure learning from noisy data, allowing us to replace human
annotation with automatic labeling approaches such as the one introduced in
Chapter 5.

Since the time of writing of this chapter, several other authors have presented
alternative ways to learn split grammars. In a concurrent work to ours,
Weissenberg et al. [198] propose an approach which generates binary split trees
from each facade and then recursively merges production rules into complex ones.
However, they do not perform experiments on using the generated grammars for
image parsing. Recently, Gadde et al. [57] has presented a method which starts
from a ‘simple-to-write’ manually designed grammar. This grammar is used to
parse the input images, thus generating initial parse trees. An unsupervised
clustering problem then infers a specific grammar which can parse images of
buildings from different architectural styles, including the newly introduced
Paris Art Deco dataset [56].
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monge_1 monge_3 monge_6 monge_9

monge_29bis monge_61 monge_65 monge_71

monge_74 monge_79bis monge_86 monge_101

Figure 7.7: Additional parsing results with the learned grammar from one fold
of the ECP dataset.



Chapter 8

Hierarchical Co-Segmentation
of Building Facades

In this chapter1, we introduce a new system for automatic discovery of high-level
structural representations of building facades. Our main assumption is that each
facade can be represented as a hierarchy of rectilinear subdivisions, which is a
common premise, especially when using split grammars, see Sec. 2.1.3. Under
this assumption, the goal is to find the optimal direction of splitting, along
with the number and positions of the split lines at each level of the tree. Unlike
previous approaches, where each facade is analysed in isolation, we propose
a joint analysis of a set of facade images. To achieve this, a co-segmentation
approach is used to produce consistent decompositions across all facade images.
Afterwards, a clustering step identifies semantically similar segments. Each
cluster of similar segments is then used as the input for the joint segmentation in
the next level of the hierarchy. We show that this approach produces consistent
hierarchical segmentations on two different facade datasets. Furthermore, we
argue that the discovered hierarchies capture essential structural information,
which is demonstrated on the tasks of facade retrieval and virtual facade
synthesis.

1This chapter is based on the joint work with Luc Van Gool, published in 3DV 2014 [115].
Anđelo Martinović is the first author.
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8.1 Introduction

As mentioned in the previous chapter, there have been several attempts to learn
facade structure from data. One idea is to assume regularity in the input. For
example, Muller et al. [126] estimate a regular grid of facade elements and convert
it into a shape grammar. Shen et al. [154] extend this approach by modeling
multiple interlaced grids. Other facade structure learning methods typically
require user interaction [128, 7, 110]. Newer approaches require pre-defined
abstractions of the input facades in form of labeled boxes [213] or pixelwise
annotations. Two examples of the latter are the approach we presented in the
previous chapter, or the concurrent work of Weissenberg et al. [198].

In this chapter, we propose to merge the gap between the supervised facade
parsing techniques, which produce imperfect labelings, and the structured
learning approaches that require clean data to work. Due to the existence of
noise in the data, we argue that the structure cannot be reliably estimated from
a single facade image, and thus propose a joint optimization of a set of facade
images. We create consistent hierarchies by performing a joint segmentation of
facades and their parts recursively, see Fig. 8.1 for an illustration. The joint
segmentation at each level is performed using a modified linear programming
technique originally introduced in [81] for 3D shape segmentation.

The two existing approaches most similar to the one presented in this chapter
are the works of Shen et al. [154] and Van Kaick et al. [194]. In the first
approach, a hierarchy is created for each facade independently, resulting in
less stable hierarchies with no correspondence across images. In the second
approach, a co-analysis is performed on a set of 3D shapes, however with the key
difference that the hierarchies are first created independently for each shape and
subsequently merged. Furthermore, they are limited to an analysis of binary
trees, while our approach allows us to create n-ary trees from the outset.

8.2 Overview

We start with a set of N facade images F and their noisy semantic segmentations
(labelings) L. We obtain the latter by running the first two layers of our
three-layered approach (Chapter 5), which provide labeling results with high
accuracy, without introducing any explicit architectural knowledge. Other
approaches for semantic segmentation could also be used [35, 30]. Our main
premise is that the facades follow the Manhattan-world assumption, and can
be decomposed by recursive splitting in the vertical and horizontal direction.
This is a common assumption used by a large number of previous works in
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Figure 8.1: An example hierarchical joint segmentation of two facade images.
Solid lines represent the hierarchical decomposition. Dashed lines indicate which
segments are used in a joint segmentation. For example, one joint segmentation
is performed for the initial facades, and one for segments {ai ∪ bi}.
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urban modeling [202, 154, 35, 181] which does not preclude the existence of non-
rectangular elements (e.g. round windows) since they can still be represented
with a bounding box. We define a scope z as an axis-aligned bounding box
which contains a non-empty area of an image and its corresponding labeling.
The initial set of images is thus converted to a set of N scopes Z = {zi}, each
scope completely covering one facade image.

At every step of the hierarchy, we want to find the optimal segmentations
of all scopes, such that the created segments are consistent across scopes.
Due to the Manhattan assumption, we can restrict our search by considering
only segments generated by splitting the scope in one of the main splitting
directions. A valid k-way segmentation of a scope thus consists of k adjacent
segments separated by k − 1 splitting lines. A brute-force approach to finding
the consistent segmentations would be to consider every possible combination of
split lines in each scope, and selecting the combination which maximizes some
predefined consistency score. Since this would be too computationally expensive,
we reduce the dimensionality of the problem by limiting the number of allowed
split line positions. This is done by first generating an oversegmentation of each
scope into a large number of smaller segments, or slices, and constraining each
segment to be a superset of contiguous slices (see Fig. 8.2). This idea is similar
to using superpixels [142] in general image segmentation, or patches in shape
segmentation [81].

The optimal subsets of segments for each scope are then selected by a modified
co-segmentation approach of Huang et al. [81], detailed in Sec. 8.4. Then, a
hierarchical decomposition is created with a recursive approach detailed in
Sec. 8.5. Similar segments across scopes are discovered in a graph clustering
step. All segments in one cluster are used as the input to the joint segmentation
stage in the next level of the hierarchy. The process continues until the produced
clusters contain uniform elements (e.g. wall regions) or elements too small for
subdivision. In Sec. 8.6 we show that the resulting hierarchies can be used for
structural facade retrieval and sampling of virtual facades.

The contributions of this chapter are as follows:

1. A novel approach for creating consistent hierarchical decompositions of
building facades. To the best of our knowledge, we are the first to use a
co-segmentation approach in this context;

2. A graph clustering approach for automatic discovery of semantically
similar elements across images;

3. A new tree distance measure for comparing n-ary trees based on sequence
matching.
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Figure 8.2: A single image-labeling pair (a) is oversegmented into a large number
of slices (b). Randomized segmentations (c) with a varying number of segments
create the initial pool of segments.

8.3 Initial Segmentation

In order to generate an oversegmentation of a scope, we define a support function
for placing a split line at each position in the scope:

Υ(z) = ΥIG(Fz) ·ΥIC(Fz) ·ΥLB(Lz) ·ΥLC(Lz) (8.1)

This function aggregates the data support from both the original image and
the noisy labeling through the following four factors, normalized to the interval
[0, 1]:

• Image gradient support ΥIG [154, 35] promotes placing of horizontal
(vertical) split lines where horizontal (vertical) edges or gradients are
prominent, and vertical (horizontal) edges are rare.

• Image content support ΥIC [35] proposes split line positions based on
the inverse of the normalized cut between the two created parts of the
image.

• Label border support ΥLB uses the semantic information from the
labeling to penalize lines which split facade elements such as windows,
doors and balconies.

• Label content support ΥLC : same as ΥIC , but defined over the labeled
image.

The next step is to create an oversegmentation of a scope into a predefined
number of slices. We are looking for at mostK split lines (30 in our experiments),
corresponding to peaks in the data support function, which split the scope into
K + 1 slices.
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A peak in a vector is defined as a position where the vector has a higher value
than its neighbors, and is preceded by a value lower than a threshold τ . By
setting τ to a very low value, we initially detect a large number of peaks, most
of them affected by the noise in the support function. However, we can smooth
the support function by convolving it with a Gaussian window, thus reducing
the total amount of detected peaks. The peak detection problem is now posed
as the search for the best Gaussian window which produces a number of peaks
as close as possible to K.

We solve this problem using binary search, setting the initial lower and upper
bound on the Gaussian window size to γl = 1 and γu = |Υ(z)| respectively. In
each step, we convolve the support function with the Gaussian window of size
γm = (γu + γl)/2. If we detect more peaks than K − 1, the search is continued
by setting γl = γm. If the number of peaks is smaller, we set γu = γm. The
algorithm finishes when γl = γu or the number of generated peaks is equal to
K. The result of this step is a set of K + 1 slices Cz, and K splitting lines lz,
for each scope z. The support function evaluated at the splitting line positions
Υ(z, lj) gives us the strength of each split line, which we use to group the slices
into segments.

8.3.1 Segment Proposals

Similar to Huang et al. [81], from a set of slices Cz, we generate many proposal
segmentations by varying the number of target segments k from 1 to 20, and
running 250 rounds of randomized segmentations for each k. In each round, we
perform k-medoid clustering of slices, following the EM pattern. We initialize
the algorithm by uniformly sampling k slices as cluster centers. In the M-step,
every slice ci ∈ Cz is assigned to the closest cluster center cm, based on the
distance between two slices δ(c1, c2). We define this distance as the maximum
of all split line strengths Υ between two slices, which penalizes the creation
of segments which span strong split lines. If there is another cluster center
c′m between c and cm, the distance δ(c, cm) is set to infinity. This forces the
segmentation to contain only contiguous clusters of slices. In the E-step, the
medoids are estimated from the cluster members, by minimizing the sum of
distances between elements in one cluster.

Typically, many segments generated in this fashion will appear in more than
one randomized segmentation. Segments that are generated the most often
are the ones most useful to us, being less sensitive to randomization and the
selected number of target segments. Therefore, we weight each unique segment
s by the number of times it appears over all randomized segmentations of a
single scope, i.e. the frequency of appearance is used as the fitness score ws of
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the segment. This simple weighting scheme proved to be sufficient for the task,
as we did not observe any improvement by using the more elaborate weighting
scheme from Huang et al. [81]. Finally, to reduce the total amount of segments
for the subsequent optimization procedure, for each scope we retain n = 100
segments with the highest weight as the set of proposals Iz, making sure that it
contains at least one complete segmentation of the scope.

We represent each segment s with a vector h(s) which is a concatenation of two
types of features:

• Label features hl(s). Histogram of labels from the entire segment and
from each of its 2x2 subdivisions. The resulting feature vector captures
the coarse distribution of labels.

• Image features hi(s). Histogram of visual words. Dense SIFT features
are extracted from all images, followed by K-means clustering into a
codebook of 256 visual words.

Finally, to measure the dissimilarity between two segments, we introduce a
distance measure based on the histogram intersection between the feature
vectors:

d(s, s′) = 1−
∑
imin(hi(s),hi(s′))∑

i hi(s′)
(8.2)

8.4 Co-Segmentation

The purpose of the co-segmentation step is to find the best subset of segments for
each scope, such that they are salient in each scope and consistent across scopes.
We follow the same basic algorithm which was introduced for joint segmentation
of 3D shapes [81]. In this section, we summarize the basic algorithm, with
emphasis on the main differences introduced in our work.

8.4.1 Pairwise Co-Segmentation

Given two scopes z1 and z2 and their corresponding sets of proposal segments
I1 and I2, the pairwise co-segmentation searches for the best valid subsets of
segments S1 ⊆ I1 and S2 ⊆ I2, by maximizing both the quality of individual
segmentations, and the consistency between them. A subset of segments is
considered valid only if the selected segments cover the entire scope without
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overlapping. The consistency between two scopes is modeled through two
many-to-one mappings Mij ⊂ Si × Sj , from segments in S1 to segments in
S2, and vice versa. The many-to-one mappings allow us to match scopes with
different amount of corresponding parts. Thus, each segment in one scope will
be mapped to at most one segment in the other scope. The maximization can
be written as

max
S1,S2,M12,M21

∑
s∈S1∪S2

rsws + λ
∑

(s,s′)∈{M12,M21}

rsw(s,s′) (8.3)

where the parameter λ (0.1 in our experiments) weighs the relative importance of
the segmentation (left) and consistency scores (right). The segmentation score is
a normalized sum of segment weights ws, defined in Sec. 8.3.1. The normalization
factor is the relative size of the segment s in the scope z: rs = area(s)/area(z).

The consistency term is a normalized sum of similarity weights between all
segment pairs (s, s′) induced by each of the two mappings. The similarity is
determined based on the distance measure d between two segments (Sec. 8.3.1):

w(s,s′) = exp

(
−d

2(s, s′)
2σ2

)
(8.4)

In our experiments, σ is set to half the maximum distance between all pairs of
most similar segments.

Integer Programming Formulation

The maximization problem from Eq. 8.3 can be reformulated as an integer
program [81]. For every segment s ∈ Ii, an indicator variable xs is introduced,
and defined to be xs = 1 when the segment is selected, and 0 otherwise.
Additionally, for every pair of segments (s, s′) ∈ Ii × Ij , the indicator variable
y(s,s′) is defined to be 1 when this pair is selected in the mapping Mij . The
objective function from Eq. 8.3 is then reformulated as follows:

max
∑

i∈{1,2}

xTi wseg
i + λ

∑
ij∈{12,21}

yTijwcor
ij (8.5)

where xi and wseg
i represent all segment indicators in Ii and their normalized

weights. Likewise, yij is a binary vector of all pair indicators in Ii × Ij , and
wcor
ij are their normalized similarity weights. The first set of constraints in the

integer program states that the selected segments must cover the entire scope
zi, without overlapping: ∑

s∈cover(c)

xs = 1 ∀c ∈ Czi (8.6)
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where cover(c) is the set of all segments that contain slice c. Secondly, each
segment of Ii can map to at most one segment in Ij , which itself has to be
selected: ∑

s′∈Ij

y(s,s′) ≤ xs ∀s ∈ Ii (8.7)

y(s,s′) ≤ xs′ ∀(s, s′) ∈ Ii × Ij (8.8)

The integer problem (IP) is obtained by adding the integrality constraints on the
x and y variables. Note that our program contains 2n+ 2n2 integer variables,
unlike [81], where adjacency constraints create 2n4 additional variables. In
our experiments, using the adjacency term did not result in any noticeable
improvement. Another difference is that we solve the IP by relaxing the
integrality constraints only on the y variables, resulting in a mixed-integer linear
program (MILP) with 2n integrality constraints. This approach gives us a
tighter bound on the IP solution than we would obtain by relaxing all variables.
Although the worst-case complexity of this MILP is O(22n), in practice the
constraints (8.7) and (8.8) allow for a quick convergence of branch-and-cut
methods, such as the MOSEK MILP solver in the CVX software package [68].
For n = 100, the optimal solution is usually reached within a few seconds on an
8- core machine. The fractional y variables are subsequently rounded to the
closest integer, respecting the constraints.

Segment filtering. After the optimization in Eq. 8.5 has been performed
for every pair of scopes, we introduce an additional filtering step. For each
scope, we keep only the segments that are selected in at least one of the
pairwise optimizations. By discarding the remaining segments, we reduce the
computational burden in the subsequent stages.

8.4.2 Multiway Co-Segmentation

A joint segmentation of all scopes is performed by a generalization of Eq. 8.5 to
N scopes:

max
N∑
i=1

xTi wseg
i + λ

N − 1

N∑
i=1

N∑
j=1

i 6=j

yTijwcor
ij (8.9)

Note that the segment filtering step reduces the size of w vectors compared
to Eq. 8.5. The resulting optimization is again solved with CVX, but due to
its higher complexity, we constrain the maximum run-time of the solver to
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Figure 8.3: Hierarchical joint segmentation of facade images: (a) ECP dataset.
(b) Gruenderzeit dataset. Each cluster of similar elements in one level of the
hierarchy is represented with the same overlay color, which corresponds to the
border color in the next level. Due to space restrictions, only a subset of the
hierarchy is shown.

30 minutes. In our experience, this was enough to reach a solution with a
sufficiently small optimality gap. An approximate block-coordinate procedure
as in [81] could be employed to increase the speed of optimization, but with no
optimality guarantees.

8.5 Hierarchical Co-Segmentation

The co-segmentation step results in a flat segmentation of each scope, with
mappings between corresponding segments in different scopes. The next step is
to create a hierarchical decomposition of each facade. The first step towards
this goal is finding subsets of semantically identical elements, which can be
segmented jointly in the next step of the hierarchy.

8.5.1 Segment Clustering

We represent the segments selected in all scopes by the joint segmentation into
one directed, weighted assignment graph G = (V,E). Each node in the set V
corresponds to a selected segment si, i.e. a segment for which xi = 1. E is
a set of directed edges, where node vi is connected to vj if the value of the
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corresponding yij variable is equal to 1. The weight of each edge eij is defined
in Eq. 8.4.

Our key observation is that the groups of similar elements will form dense clusters
in the graph G. By discovering these clusters, we will also find self-similarities
in the input scopes, a feature not modeled by the joint segmentation itself.
Thus, our goal is to determine the groups of segments which correspond to each
other, within and across scopes. To this end, we run spectral clustering [197]
on the graph G. We calculate the normalized graph Laplacian [155], and use
its eigenvalue decomposition to find the number of clusters κ. Based on the
eigengap heuristic, we sort the eigenvalues λi in ascending order, and pick κ as
argmaxi(λi+1 − λi).

There is a possibility that after the clustering step, two neighboring segments in
a scope are assigned to the same cluster, e.g. two wall parts next to each other.
In these cases, we simplify the final segmentation by merging those segments
into one. However, this must not be done indiscriminately, since there are
cases when we expect neighboring segments of the same class (e.g. two floors).
We merge two neighboring segments only if their potential merger has a small
distance d to the remaining segments in the cluster.

8.5.2 Hierarchy Creation

Initially, N segmentation trees are created, each containing a single root node,
corresponding to the whole facade. After performing the co-segmentation and
clustering, every tree is augmented with κ children nodes, one for each cluster.
In Fig. 8.3 the trees are merged and the same-cluster segments overlaid with the
same color. These segments now become new sets of scopes for the next level of
joint segmentation, performed recursively on each cluster. The recursion stops
when either the average scope size in the direction of splitting is smaller than a
predefined size, or the scopes in the set are uniform in appearance.

The direction of splitting for each node in the hierarchy is determined adaptively.
We perform the joint segmentation in both directions, and select the one which
gives a more consistent joint segmentation, based on the similarity between a
pair of scopes zi and zj [81]:

w(zi, zj) = yTijwcor
ij + yTjiwcor

ji , w ∈ [0, 2] (8.10)
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8.5.3 Segment Synchronization

As we go deeper in the hierarchy, the number of scopes to be jointly segmented
increases dramatically (e.g. 20 facades result in ~80 floors and ~400 windows).
We can reduce the computational burden for the joint segmentation steps
further down in the hierarchy by making the following observation: within one
cluster, two scopes with a common parent node are more alike than scopes
originating from different parents. Therefore, instead of considering each of
these scopes separately, we perform segment synchronization. First, for each
set Ψ of same-cluster scopes originating from the same node, we average their
data support functions:

Υavg = 1
|Ψ|

∑
s∈Ψ

Υ(s) (8.11)

and create a representative scope by averaging the feature vectors of all scopes in
Ψ. This scope replaces all scopes in Ψ during the joint segmentation. Afterwards,
the discovered segment borders are back-projected to the original scopes.

Fig. 8.1 illustrates the process of synchronization: floors ai are synchronized:
they originate from the same facade, so they are segmented in the same way.
However, their hierarchies are allowed to differ. As can be seen in the next level
of the hierarchy, window tiles in floors ai are synchronized, but different from
the synchronized tiles of floors bi. This allows us to model local differences,
while still correctly capturing the global correspondence.

8.6 Results

In this section we show some qualitative results of the joint hierarchical
segmentation, and evaluate the approach on the task of facade retrieval. Finally,
we show how virtual facade layouts can be generated from the induced hierarchy.

8.6.1 Experimental Setup

The main evaluation of our approach is performed on the well-established ECP
facades dataset [178], containing 104 images of buildings in Paris. Since all
facades in this dataset follow the same Haussmannian architectural style, it is
an ideal candidate for our joint segmentation approach. There are 8 semantic
labels in this dataset, namely {window,wall, balcony, door, roof, sky, shop}.
We also test our approach on a subset of the Graz dataset from [144], consisting
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of 30 images in Gruenderzeit style, annotated with a smaller set of labels:
{window,wall, door}. Since we use the output of a supervised facade parsing
approach [113] as the input to our approach, we are limited to the analysis of
the test set. To cover the entire ECP dataset, we repeat our experiments 5
times, in each fold using different 20 images as the test set, and average the
results.

8.6.2 Hierarchical Co-Segmentation

In Fig. 8.3 we visualize the results of our approach on a subset of ECP and
Gruenderzeit dataset, respectively. Due to space limitations, here we show only
some nodes in the hierarchy. Full results for one fold of the ECP dataset can
be seen in Fig. 8.4.

The first row of Fig. 8.3 (a) shows the consistent first-level segmentation of the
Parisian facades. The coloring corresponds to the different clusters discovered in
the data. Our system has automatically detected 6 clusters of similar elements,
roughly corresponding to the regions of sky, roof and shop, ledges (red) and
two types of floors: regular (green) and floor with running balcony (purple).
The consistent segmentation reveals that running balconies usually appear
in the second and fifth floor, which is one of the distinguishing properties
of Haussmannian architecture. We can also see that the floors with running
balconies are split differently than the regular floors in the next level of the
hierarchy.

In the Gruenderzeit dataset, we can solely separate floors from the wall regions,
since there are only three semantic labels in the annotations. Even in this case,
the hierarchical segmentation produces reasonable results, splitting floors into
window tiles, which are further subdivided into window and wall regions.

8.6.3 Facade Retrieval

In facade retrieval, a query facade is presented to the system. The query is then
compared to a set of known facades based on a pre-defined distance measure.
These facades are then re-ranked based on their distance to the query facade,
and top K ranked facades are returned as output.

In this section, we demonstrate that our hierarchical representation of facade
structures can be used for retrieval of structurally similar facades, rather than
those similar in local appearance. We follow the protocol for facade comparison
introduced by Weissenberg et al. [198] for the ECP dataset. The gold standard
distance δGT between two facades is defined as the total number of architectural
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Figure 8.4: Results on the ECP dataset, fold 1. Elements from the same cluster
are overlaid with the same color.
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Figure 8.5: Cumulative Match Characteristics (CMC) for different retrieval
methods on the ECP dataset, averaged over 5 folds. Normalized area under
curve is shown in square brackets.

changes: number of floors, number of window columns, position of the running
balconies and doors. For each facade in the set, all other facades are re-
ranked in the ascending order of δGT , and the one with the smallest distance
is kept as the ground-truth nearest neighbor. Once the ground truth ranking
is established, various retrieval methods are evaluated using the Cumulative
Match Characteristic (CMC). This measure counts the percentage of correctly
retrieved results (gold distance nearest neighbors) in the top-K ranking. When
K is equal to the dataset size, all facades are retrieved, resulting in CMC value
of 1 for any method.

We test the retrieval results with several different methods, and show the results
in Fig. 8.5. As the first baseline for facade comparison, we create the histograms
of semantic labels in each image, and use the histogram intersection measure
as the distance δL. Second, we use the histograms of dense SIFT features
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coded into a vocabulary of 256 visual words, to obtain the distance δS . A
combined distance δLS is calculated by concatenating the two aforementioned
histograms. Additionally, we evaluate the distance δJ = 2−w(zi, zj), measuring
the dissimilarity of scopes in the first-level joint segmentation step (Eq. 8.10).

In order to test our hierarchical method, we introduce a new measure for tree
distance δT . The distance is defined recursively between two induced hierarchical
segmentations h1 and h2 as:

δT (h1, h2) = δN (N1, N2) +
∑

(a1,a2)∈A

r(a1, a2)δT (ha1 , ha2) (8.12)

where N1 and N2 are the root nodes of the hierarchies, and the set A contains
all pairs of children nodes that belong to the same cluster. The relative size r
of the children normalizes the sum on the right-hand side to 1. We evaluate
our tree distance measure δT with varying depth of the hierarchy. For example,
the tree distance in the first level of the hierarchy is simply δN .

Finally, we define the node distance δN between the roots of (sub)hierarchies. We
want the distance to be sensitive to the relative order of child nodes. Therefore,
we represent the parent node as a string, where each symbol corresponds to the
cluster ID of the child node. We match these two sequences using the Smith-
Waterman algorithm [163], a dynamic-programming approach traditionally used
in bioinformatics to align DNA and protein sequences. We simply define the cost
of assigning one element of the sequence to another, and the cost of skipping an
element in the sequence (gap cost). We use a constant penalty for mismatched
symbols, and size-dependent gap costs, i.e. smaller facade elements are more
likely to be skipped.

The retrieval results are shown in Fig. 8.5. As expected, the combination of the
label histograms and SIFT features δLS outperforms either of the stand-alone
methods. On the other hand, using the joint segmentation distance δJ results in
poor performance, due to two main limitations. First, this distance models only
the first level of the hierarchy, and does not capture the lower-level structural
differences. Second, many-to-one mappings disregard the relative frequency
of elements, information which is not lost in histogram-based methods. For
example, a perfect mapping can be found between a facade with 10 floors and a
facade with 1 floor, resulting in a low δJ . Our tree distance δT does not suffer
from these issues. Even when using only one level of the hierarchy, where the
only discovered elements are floors, our distance provides better discriminative
power than δJ , due to the ordering information. By using the second level of
the hierarchy, we obtain even better results, due to the correct modeling of
window tiles. We do not observe any significant improvement in retrieval by
using the third level, where the hierarchy models only local differences. It is
important to note, however, that using the deeper levels of the hierarchy does
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not degrade the results, even if similarities not captured by the ground truth
are found.

8.6.4 Facade Synthesis

The state-of-the-art methods for facade structure extraction [114, 198] have
shown that procedural split grammars can be inferred from clean, ground-truth
labelings. The grammars can subsequently be used to generate new facades
by changing the parameters of the grammar. Similar to our approach, these
methods split the facades in alternating vertical and horizontal directions, where
each split is represented as one rule in the procedural grammar:

Xα → split(dir){rα1 : bα1 |rα2 : bα2 ...|rαn : bαn} (8.13)

where Xα represents the root node and dir the direction of splitting. With
bα = {bαi } and rα = {rαi } we denote the set of children and the vector of their
relative sizes.

However, both of the aforementioned methods create the structural decom-
position of each facade separately, and then attempt to merge the inferred
decompositions to obtain a joint grammar. On the other hand, our joint
approach immediately creates consistent trees, albeit noisier due to the usage
of imperfect input data. We create a procedural grammar from the ECP test
set by transforming each of the 20 hierarchies into a set of procedural rules,
which are then aggregated. In the next step, we perform the same production
rule inference as in Weissenberg et al. [198]. This process merges all similar
rules which have the same form (but different size vectors) into one. The initial
facades are now re-created by selecting the appropriate size vector rα. New
facades in the similar style can be obtained by fitting a multivariate Gaussian
distribution to the set of size vectors in each rule, and then sampling from
this distribution. Fig. 8.6 shows some virtual facade layouts sampled in this
fashion. We export these layouts to CityEngine [42] and create 3D buildings
by automatic placement of architectural elements from a 3D library at the
positions defined by the layouts.

8.7 Conclusion

This chapter introduced a system for higher-level understanding of building
facades through a joint hierarchical decomposition approach. Unlike most
previous facade structure learning approaches, which rely on user interaction or
ground truth annotations, we show that facade structure can be induced even
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Figure 8.6: Synthesis of virtual facade layouts. The sampled layouts are
represented as procedural split grammars and converted into 3D models with
CityEngine.

by using noisy inputs. Our key observation is that consistent hierarchies can
be created by performing a joint segmentation approach on each level of the
hierarchy. The joint segmentation allows us to produce stable, consistent
segmentations across images, despite the noise present in the input data.
Moreover, the induced hierarchies are a meaningful semantic representation
of the building facade, which we demonstrate on the task of structural facade
retrieval. We also convert the hierarchies into procedural grammars and use
them to sample new facade designs, which respect the layout of the original
facades.

The approach presented in this chapter could be extended by adding feedback
during hierarchy construction. This could help reduce the effect of error
propagation to the deeper levels of the hierarchy. Although this chapter focused
solely on split operations, other kinds of structural decompositions popular in
hand-designed grammars may be added, such as repetition and symmetry.



Chapter 9

Conclusion

In this thesis we investigated various ways in which semantic knowledge can
be used in the process of urban reconstruction. In particular, we focused on
procedural models encoded as shape grammars which provide rich yet compact
means to encode this knowledge. Furthermore, we investigated approaches
that allow us to extract this knowledge from acquired data using techniques of
inverse procedural modeling.

In Part 1 we have shown that grammars are quite useful in building
reconstruction, as missing data can be filled in, detectors can be targeted
to specific objects, and learn from experience by training more specific detection
models. In addition, we have demonstrated that an appropriate reconstruction
grammar may be selected automatically by detecting the building style. The
drawback of these approaches is the dependence on scarce expert-written
grammars, which hinders their large-scale applicability.

In Part 2, we pushed the limits of semantic segmentation of building facades,
without a priori dependence on procedural grammars. Importantly, we have
shown that generally applicable architectural principles such as symmetry or
alignment can provide important cues when creating a high quality pixel-wise
semantic labeling. This semantic labeling can afterwards be converted in
an instance-specific procedural model. In addition, by moving the semantic
segmentation process to 3D, we gain significant speed improvements (20x
compared to the 2D approach), while achieving competitive perfomance. This
brings us a step forward towards efficient large-scale city reconstruction with
detailed facade models. The flexibility of our approach allows for higher
accuracy than grammar-based approaches, although it may in some cases
produce imprecise reconstructions. Thus, grammar-based approaches could still
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be used when we are willing to sacrifice some of the accuracy for the guarantee
that the output will be a valid facade.

In Part 3 we demonstrated that the semantic labelings of facades can be used to
learn grammars from data. We have shown that split grammars can be induced
from ground-truth 2D semantic labelings of same-style facades. The inferred
grammars are shown to be equally effective as hand-written grammars for parsing
the structure of newly observed facades. In contrast to bottom-up approaches,
the induced grammars allow us to sample new facade designs in similar style,
useful for example in city planning. The task of learning procedural facade
grammars from data has since received increased interest [198, 57]. Finally,
we have proposed an approach to induce facade structure from noisy labelings
coming from bottom-up semantic segmentations. Instead of depending on
manual labeling or handwritten grammars, we proposed a co-segmentation
approach to directly infer consistent structures throughout the dataset. We
have shown that the induced facade decompositions in form of hierarchies
perform well directly in tasks such as facade retrieval, or can be converted to
conventional split grammars.

9.1 Outlook and Future Work

One limitation of the grammar-based methods introduced in this thesis is the
assumption that facade structure can be effectively captured by split grammars,
i.e. that a facade can be represented as a sequence of splitting operations.
However, in some cases, more complex operators, such as layering [213] are
required to capture the architect’s intent. One may also move to a different
kind of grammars for facade analysis altogether, such as graph grammars [97]
or 2D adjacency patterns [96].

Considering the visual quality of the produced building models, realistic
texturing is an important ingredient in building reconstruction process. However,
textures obtained from aerial or rectified perspective images often contain
artifacts, are limited in resolution, and have large memory requirements in
the final model. In order to mitigate these problems, textures of facade
elements can also be generated procedurally. Some work in this vein has
already appeared [106, 36]. Yet, these approaches synthesize the entire facade
texture rather than separate textures for its constituent parts, and do not take
into account the extra information which the semantic labels provide.

The next step in the quest for photo-realistic city rendering is the acquisition
of detailed models of shape reflectance. Current state-of-the-art approaches
express these material characteristics with Bidirectional Reflectance Distribution
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Functions (BRDFs), which can in fact be induced from images [60]. However,
applying the existing methods in outdoor scenarios with uncontrolled lighting
remains a challenge.

Finally, an interesting extension of this work would be to design tools that
transfer the acquired building models to widely used standards in industry, such
as Industry Foundation Classes (IFC) or City Geography Markup Language
(CityGML). Some authors have begun to tackle this problem by creating BIM
models from raw point clouds [9] or extracting semantics from existing CAD
models in IFC format [19].





Appendix A

Earley Parsing for 2D
Stochastic Context Free
Grammars

In Chapter 7 we have presented a novel approach of learning a specific variant of
procedural grammars from data, namely 2D Attributed Stochastic Context Free
Grammars, or 2D-ASCFGs. One of the essential parts of the grammar learning
algorithm described therein is the Earley parser for 2D-SCFGs. The purpose
of this technical report is to provide the implementation details of this parser,
illustrate the approach on simple examples, and discuss the improvements over
the existing methods.

A.1 Introduction

This appendix provides detailed instructions on the implementation and usage
of an Earley-style parser for two-dimensional stochastic context free grammars
(2D-SCFGs), used in Chapter 7. Earley’s parser [41] is a well known top-down
parsing algorithm for context free grammars (CFGs) that has a worst-case
complexity of O(n3), where n is the size of the input. However, it was shown
that the parser can perform substantially better for many well-known grammar
classes. For example, it runs in quadratic time for unambiguous grammars, and
in linear time for most LR(k) grammars. Another appealing property of Earley’s
algorithm is that it deals with any context-free rule format; it does not require
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grammar conversion to Chomsky Normal Form (CNF), as some alternatives do,
such as CKY [211] chart parsing. Although every context-free grammar can be
transformed into CNF, this comes with a price. Such conversion can lead to an
undesirable increase of the grammar size [105].

Originally, Earley’s parser was designed in the field of computational linguistics
as a string parsing algorithm. The parser uses a dynamic programming approach
that decides whether a given one-dimensional structure (i.e. a string) belongs to
a given CFG. This original formulation was improved upon by various authors
over time. The work of Stolcke [170] introduced an extension to stochastic
context free grammars (SCFGs). Given the stochastic nature of these grammars,
the upgraded parser output also includes the probability that a string is produced
by the given grammar.

Some authors attempted to generalize the Earley parser by considering different
input domains. In [34], relation grammars were proposed to model multi-
dimensional structures. Wild [200] used multiple context free grammars
(MCFGs) to model RNA interaction problems. Although similar in notation,
their definition of a 2D-SCFG is very different from ours, since in MCFGs
non-terminals produce tuples of words of given dimension. Costagliola and
Chang [33] introduced positional grammars that explicitly model the spatial
relations between symbols in grammar productions. This formalism was used for
parsing arithmetical expressions. The approach closest to ours was presented by
Tomita [186], who introduced a straightforward extension of the Earley parser
to two-dimensional grid structures. However, some cases of input examples
were not handled properly in this algorithm. In Section A.4 we show a failure
example where the approach of [186] does not properly parse a 2D grid, in
contrast to our proposed method. Furthermore, our methods generalizes to
2D stochastic CFGs, which are much less studied in literature. One of the few
existing 2D SCFG parsing approaches was used for recognition of mathematical
expressions [217]; however, this approach uses a 2D CKY parser, which requires
the grammar to be in Chomsky Normal Form.

A.2 2D-ASCFGs

Here we repeat the Section 7.3 as a reminder of the definition of this particular
grammar type.

A two-dimensional attributed stochastic context-free grammar (2D-ASCFG)
is defined as a tuple G = (N,T , S,R, P,A), where N is a set of non-terminal
symbols, T a set of terminal symbols, S the starting non-terminal symbol or
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axiom, R a set of production rules, {P (r), r ∈ R} a set of rule probabilities and
{A(r), r ∈ R} a set of rule attributes.

Every symbol is associated with the corresponding shape, representing a
rectangular region. Starting from the axiom, production rules subdivide the
starting shape either in horizontal or vertical directions. We define the set R as
a union of horizontal and vertical productions: R = Rh∪Rv. These productions
correspond to standard horizontal and vertical split operators in split grammars.
A production is of the form X → λ, where X ∈ N is called the left-hand-side
(LHS), and λ ∈ (N ∪ T )+ is called the right-hand-side (RHS) of the production.

For every production, P (X → λ) is defined as the probability that the rule
is selected in the top-down derivation from the grammar. For the grammar
to be well-formed, the productions with X as LHS must satisfy the condition∑
λ P (X → λ) = 1. Additionally, each grammar rule r is associated with

a set of attributes A(r) = {αi}. The elements of a single attribute are the
relative sizes of the RHS shapes in respect to their parent shape, in the splitting
direction: αi = {s1, ..., s|λ|},

∑
i si = 1. These relative sizes sum up to one

because RHS shapes always fill the entire shape of their parent.

We denote by τ a parse tree from the grammar, rooted on the axiom, its interior
nodes corresponding to non-terminal symbols, and its exterior nodes to terminal
symbols. The parse tree is obtained by applying a sequence of rules on the
axiom and non-terminal nodes. A derivation from the grammar consists of the
parse tree and the selected attributes at each node: δ = (τ, α). The probability
of a single derivation is the product of all rule probabilities selected at each
node s of the parse tree: P (δ) =

∏
s∈δ P (rs). The set of terminal nodes of a

parse tree defines a lattice over an area. A lattice, or a grid is a rectangular
tessellation of 2D space, exactly filling the shape of the axiom. We define the
likelihood of the grammar G generating a lattice l as L(l|G) =

∑
δ⇒l P (δ),

where we sum over the probabilities of all derivations that yield a particular
lattice.

A.3 2D Earley Parser

In this section, we mostly follow the notation from [170] and [186], adapting it
as necessary. For a set of input symbols organized in a grid I of width n and
height m,



170 EARLEY PARSING FOR 2D STOCHASTIC CONTEXT FREE GRAMMARS

I11 I21 . . . In1
I12 I22 . . . In2
...

...
I1m I2m . . . Inm

the parser keeps track of a set of states (alternatively called items) for each
position in the input. Each of these states corresponds to a possible derivation
of the grammar that is consistent with the input up to the given point in the
grid. There can be multiple states at the same point in the grid, and they are
denoted as a state set. All of these state sets together form the Earley chart.
Unlike 1-dimensional Earley parsing, where the chart is a one-dimensional list
of state sets, 2D Earley chart is a parse table of the form

S00 S10 . . . Sn0
S01 S11 . . . Sn1
...

...
S0m S1m . . . Snm

Note that the state chart contains an additional row and column in comparison
to the input. These correspond to the states when no symbols have been
processed in the first input row or column. Each state is defined as a tuple
(p, d, o, b):

• p ∈ RH ∪Rv is a production of the grammar.

• The dot position d is an index denoting the current position in the RHS
of production p(X → λµ):

X → λ.µ (A.1)

where λ, µ ∈ (N ∪ T )+. This indicates that the RHS of the production was
expanded up to the position indicated by the dot. The dot position d = 0
signifies that no RHS symbols have been analyzed so far. In contrast, the dot to
the right of entire RHS corresponds to a fully expanded non-terminal X. Such
a state is called complete.

• The origin position o is defined a pair of indices (i, j) corresponding to
the position of the state in the Earley chart.

• The bounding box b(x, y,X, Y ) represents the admissible rectangular region
of the input I for the current state. For all b, the bounding box must be
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non-empty : x < X, y < Y . Additionally, this region has to be contained
within the input grid: 0 ≤ x,X ≤ n, 0 ≤ y, Y ≤ m. Finally, the origin
position must always lie within the bounding box: i < X, j < Y .

We will use the following short-hand formulation to describe a state:

(i, j)X → λ.µ (x, y,X, Y ) (A.2)

To simplify the exposition of the algorithm, we convert the grammar into Simple
Normal Form (SNF) [170]. In this form, terminal symbols can appear only
on the right-hand side of lexical productions, i.e. productions with a single
terminal symbol on the RHS. All other productions can contain an arbitrary
number of non-terminal symbols. This form can be easily achieved by simply
“shadowing” every terminal symbol with an additional non-terminal symbol, e.g:

X → aY c
⇓

A→ a
C → c

X → AY C

where X,Y,A,C ∈ N ; a, c ∈ T . We have chosen, without loss of generality,
the convention that lexical productions are contained in the set of horizontal
productions. We also add a starting production to the grammar, designated as
ε→ S, where ε is an empty symbol and S is the axiom of the grammar.

A.3.1 The Parsing Algorithm

Now we have all the prerequisites to describe the 2D Earley parsing algorithm.
At the beginning, an initial state is created and subsequently inserted into the
(0, 0) cell of the Earley chart:

(0, 0) ε→ .S (0, 0, n,m) (A.3)

Afterwards, the parser performs three operations: prediction, scanning and
completion.

Prediction

Given an incomplete state (the dot is not in the final position), the role of
prediction step is to enumerate all potential expansions of the non-terminal to
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the right of the dot. For each state

s : (i, j)A→ λ.Bµ (x, y,X, Y ) (A.4)

the algorithm finds all possible expansions B → ν of non-terminal B in the
grammar and creates new states to be added to the chart, of the form:

snew : (i, j)B → .ν (i, j,X, Y ) (A.5)

Scanning

In the scanning step, we read the input symbol at the current position in the
grid. All states that are in accordance with the input symbol are discovered.
Note that, as the grammar is in SNF, the only states considered are the ones
containing a lexical production. For each state

s : (i, j)A→ .a (x, y,X, Y ) (A.6)

where a ∈ T matches the input symbol Ii+1,j+1, add a new state by moving the
dot over the scanned symbol:

snew : (i+ 1, j)A→ a. (i, j, i+ 1, j + 1) (A.7)

The produced states have the dot on the far right of the RHS, and are thus
complete.

Completion

In the previous step, a complete state was produced from a predicted state by
scanning the input. The predecessors of the predicted state now need to be
updated to take into account the scanned symbol. For each complete state

s : (i, j)B → ν. (x, y,X, Y ) (A.8)

find candidate states s′ in Earley chart cell (x, y), which have B as the non-
terminal after the dot:

s′ : (x, y)A→ λ.Bµ (x′, y′, X ′, Y ′) (A.9)

The necessary condition for a candidate state to be considered is that its
bounding box encompasses the bounding box of the complete state:

x′ ≤ x ∧ y′ < y ∧X ′ ≥ X ∧ Y ′ ≥ Y (A.10)

Productions p : B → ν and p′ : A→ λBµ belong either to the set of horizontal
or vertical productions, thus there are four different combinations:
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1. p ∈ Rh, p
′ ∈ Rh

If Y ′ = Y ∨λ = ∅, add state snew = (i, j)A→ λB.µ (x′, y′, X ′′, Y ), where

X ′′ =
{
X, if µ = ∅
X ′, otherwise

2. p ∈ Rv, p
′ ∈ Rh

If Y ′ = Y ∨ λ = ∅, add state snew = (X, y)A → λB.µ (x′, y′, X ′′, Y ),

where X ′′ =
{
X, if µ = ∅
X ′, otherwise

3. p ∈ Rh, p
′ ∈ Rv

If X ′ = X ∨ λ = ∅, add state snew = (x, Y )A → λB.µ (x′, y′, X, Y ′′),

where Y ′′ =
{
Y, if µ = ∅
Y ′, otherwise

4. p ∈ Rv, p
′ ∈ Rv

If X ′ = X∨λ = ∅, add state snew = (i, j)A→ λB.µ (x′, y′, X, Y ′′), where

Y ′′ =
{
Y, if µ = ∅
Y ′, otherwise

These conditions simply state that the bounding box edges of states s and s′
must align vertically (Y ′ = Y ), or horizontally (X ′ = X), unless s′ has not been
expanded. The definitions of X ′′ and Y ′′ are necessary if the newly created
state snew is complete (µ = ∅). In that case, the bounding box of state s′ must
be clipped to the value given by s (see Figure A.1). Additionally, the completion
step will have to be performed on snew as well.

A special case during completion occurs when symbol B is identical to the
grammar axiom S, i.e. the candidate production is the starting production:

s : (i, j) ε→ .S (x′, y′, X ′, Y ′) (A.11)

In that case, we add a state

snew : (i, j) ε→ S. (x, y,X, Y ) (A.12)

If such a state is produced during parsing, one valid parse of the input grid
was found, under the condition that the whole input grid is contained in the
bounding box of the state. Otherwise, only a subset of the input was parsed.
Therefore, a final state must satisfy the following conditions:

p = ε→ S, d = 1, b = (0, 0, n,m) (A.13)
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(a) (b)

Figure A.1: Completion, case 3: (a) Bounding boxes of both complete state
s and candidate state s′ are aligned. The completed state snew has the same
bounding box as s′. (b) State s completes the expansion of non-terminal in
state s′, therefore limiting the bounding box of the created state snew.

Note that, due to possible grammar ambiguity, there might be multiple
final states. Each final state corresponds to a different parse of the input.
Furthermore, there is no constraint on the position of the final state in the
Earley chart. This contrasts with one-dimensional Earley parsing, where the
final state is found only in the last state set of a one-dimensional state chart.
Algorithm 2 provides an overview of 2D Earley parsing of an input grid with a
given grammar. Functions Completer, Predictor and Scanner correspond to
previously defined operations of the parser.

A.3.2 Remarks

So far, a state was uniquely defined with a tuple s = (p, d, o, b). However, it
is also necessary to remember the entire scanning history of the state, i.e. to
keep track of the symbols in the input grid which were scanned by following the
path to the current state. Otherwise, the algorithm may produce two “equal”
states in the same Earley chart cell by having scanned different parts of the
input grid. One of these states would then overwrite the other, destroying one
parsing path completely! Therefore, each state is augmented with a matrix H
of the same size as the input grid. This matrix is empty in the initial state.
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Algorithm 2 2D Earley parsing
function EarleyParse2D(input, grammar)

stateQueue← ∅
initialState← [ε→ .S (0, 0, input.n, input.m)]
push initialState to end of stateQueue
while stateQueue 6= ∅ do

pop state from front of stateQueue
if state is complete then

newState← Completer(state, grammar)
else

Y ← state.p.rhs(d) . Symbol after the dot.
if Y ∈ grammar.N then

newState← Predictor(state, grammar)
else if Y ∈ grammar.T then

newState← Scanner(state, input, grammar)
end if

end if
if newState 6= ∅ then

push newState to end of stateQueue
end if

end while
end function

During prediction, the scanning history remains unchanged:

snew.H = s.H

In the scanning step, the new state inherits the history from the old state and
updates it with the newly scanned symbol, under the condition that the same
position in the grid has not been scanned yet:

snew.H = s.H

snew.H[i][j] = a

However, if the same position in grid has already been scanned (s.H[i][j] 6= ∅),
a new state will not be created. Finally, during completion, we make sure
that the complete state s and the candidate state s′ are “scanning history-
compatible”:

s.H[i][j] = ∅ ∨ s.H[i][j] = ∅ ∨ (s.H[i][j] = s′.H[i][j]) ∀(i, j)

If the states are not compatible, completion does not produce a new state.
Otherwise, scanning history is propagated from the complete state to the newly
created state:

snew.H = s.H



176 EARLEY PARSING FOR 2D STOCHASTIC CONTEXT FREE GRAMMARS

A.3.3 An Example

We now demonstrate the algorithm on a simple grammar with 5 productions
and a 2 ∗ 2 input grid, also used in [186]. The grammar contains the following
productions:

p1 : S H→ AA, p2 : A V→ BC, p3 : B H→ b, p4 : C H→ c, p5 : C H→ d,

where we have used short-hand notations H→ and V→ for horizontal and vertical
productions, respectively. We omit the scanning matrix H for simplicity. Non-
terminal symbols are denoted with capital letters; conversely, terminals are
shown in lowercase. S is the grammar axiom. The starting production ε→ S is
added implicitly to the grammar. Note that the grammar is non-deterministic,
since a single non-terminal C can be expanded in two different ways. We revisit
stochastic productions in Section A.4.

We now show, step by step, the complete Earley chart of the parser as it
processes the input sequence

b b
c d

Obviously, this grid is a valid derivation from the grammar, and there is only
a single way to produce it, therefore we expect a single final state. The state
chart is seeded with the initial state, corresponding to the starting production.

0 1 2
0 ε

H→ .S (0,0,2,2)
1
2

In the prediction step, there is only one state to analyse. Production p1 is used
as the only expansion of non-terminal S, and a new state is added to the same
state set.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
1
2
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Prediction continues until there are no more predictions to be made.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)
1
2

Now, using the last state in the chart in the cell (0, 0), the parser scans over
the input grid on the position (1, 1), i.e. symbol b. This results with a scanned
and complete state being added to the appropriate position in the chart.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

1
2

Note that the bounding box of the state is adjusted so that it covers only the
scanned symbol. Now, the completion step is invoked, as there is a complete
state in the current set. The upper-left corner of the complete state is (0, 0), so
we search for candidate states in that chart cell. The only state that satisfies
the conditions for completion is A V→ .BC (0,0,2,2): it has symbol B after
the dot, its bounding box encompasses the bounding box of the complete
state, and the dot is in the initial position. The complete and candidate state
contain horizontal and vertical productions, respectively, so we follow the rules
in Section A.3.1 and add the completed state in chart cell (0, 1).

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

H→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

1 A
V→ B.C (0,0,1,1)

2
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The newly added state passes through the prediction step and creates two
predicted states, corresponding to two productions for non-terminal C.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

1 A
V→ B.C (0,0,1,2)

C
H→ .c (0,1,1,2)

C
H→ .d (0,1,1,2)

2

The second prediction is discarded during scanning, as the terminal symbol
does not match the input. The first prediction, however, creates a new scanned
state.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

2

The completion step now finishes the derivation of non-terminal A in cell (0, 2).
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0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

2 A
V→ BC. (0,0,1,2)

Note that the bounding box of the completed state in cell (2, 0) corresponds
to scanning the first column of the input grid. This completed state in turn
triggers a completion, resulting with the second state in cell (1, 0).

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

S
H→ A.A (0,0,2,2)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

2 A
V→ BC. (0,0,1,2)

The bounding box of this newest state still encompasses the whole input grid,
as there are more non-terminals on the production right-hand side that have
not been expanded. Next, this state is used for prediction, creating two new
states, one of which is immediately used in the scanning step.
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0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

S
H→ A.A (0,0,2,2)

A
V→ .BC (1,0,2,2)

B
H→ .b (1,0,2,2)

B
H→ b. (1,0,2,1)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

2 A
V→ BC. (0,0,1,2)

After the completion and prediction steps:

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

S
H→ A.A (0,0,2,2)

A
V→ .BC (1,0,2,2)

B
H→ .b (1,0,2,2)

B
H→ b. (1,0,2,1)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

A
V→ B.C (1,0,2,2)

C
H→ .c (1,1,2,2)

C
H→ .d (1,1,2,2)

2 A
V→ BC. (0,0,1,2)

The last symbol in the grid is subsequently scanned, which triggers a recursive
completion step, resulting with a final state.

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,1,1)

S
H→ A.A (0,0,2,2)

A
V→ .BC (1,0,2,2)

B
H→ .b (1,0,2,2)

B
H→ b. (1,0,2,1)

S
H→ AA. (0,0,2,2)
ε

H→ S. (0,0,2,2)

1 A
V→ B.C (0,0,1,2)
C

H→ .c (0,1,1,2)
C

H→ .d (0,1,1,2)

C
H→ c. (0,1,1,2)

A
V→ B.C (1,0,2,2)
C

H→ .c (1,1,2,2)
C

H→ .d (1,1,2,2)

C
H→ d. (1,1,2,2)

2 A
V→ BC. (0,0,1,2) A

V→ BC. (1,0,2,2)
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b b
c d
e e

p1 : S
V→ X1X2

p2 : X1
H→ AA

p3 : X2
H→ EE

p4 : A
V→ BC

p5 : B
H→ b

p6 : C
H→ c

p7 : C
H→ d

p8 : E
H→ e

Figure A.2: A more difficult example. Left: Input grid, right: input grammar

The underlined state satisfies all final state conditions, which means that the
algorithm has found a valid parse of the input. In contrast, by following the
method described in [186], the final parse chart would be as follows:

0 1 2
0 ε

H→ .S (0,0,2,2)
S

H→ .AA (0,0,2,2)
A

V→ .BC (0,0,2,2)
B

H→ .b (0,0,2,2)

B
H→ b. (0,0,2,1) S

H→ A.A (0,0,2,2)
A

V→ .BC (2,0,2,2)
B

H→ .b (2,0,2,2)

1 A
V→ B.C (0,0,2,2)
C

H→ .c (0,1,2,2)
C

H→ .d (0,1,2,2)

C
H→ c. (0,1,2,2)

2 A
V→ BC. (0,0,2,2)

Notice the different bounding box of non-terminal B in chart position (1, 0)
which propagates to subsequent states, making it impossible to parse the input.
Since Figure 18.3 in [186] shows a successful parse of this input, we can only
conclude there is an omission in their algorithm, likely in the scanning step.
However, even if the scanning step of their approach is fixed to calculate the
correct bounding box, the algorithm of [186] does not properly handle cases
such as the one exemplified in Figure A.1. We demonstrate this on a more
challenging input, shown in Figure A.2.

We parse the input with both the approach of [186] (after fixing the scanning
step) and our approach, and show the final Earley charts in Figure A.3. Our
approach successfully parses the input with the given grammar, while the
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approach of [186] fails due to absence of X ′′ and Y ′′ terms in the completion
step.

A.4 Extension to Stochastic Grammars

As said in Section A.2, in a stochastic context free grammar (SCFG), every
production contains an associated probability. Consequently, the grammar
generates each output derivation with an associated probability. Due to
ambiguities in the grammar, there might be multiple ways of generating a
single output. As defined previously, the likelihood of a grammar G generating
a lattice l is defined as L(l|G) =

∑
δ⇒l P (δ), summed over all derivations that

yield a particular lattice (grid). However, among these alternative derivations,
we are interested in the most-likely path, i.e. the sequence of rules associated
with the maximum probability. This sequence is called the Viterbi parse, and
its corresponding probability the Viterbi probability.

Our 2D Earley parser can be easily adapted to calculate the Viterbi parse of a
given derivation, by following the procedure described in [170]. Essentially, every
state in the Earley chart is assigned a Viterbi probability. These probabilities are
then propagated and updated during parsing. Finally, the derivation probability
is determined by reading out the Viterbi probabilities in all final states in the
chart, and selecting the maximum value.

To describe the probability calculation algorithm, the concept of predecessor
states needs to be introduced. As described in Section A.3, new states are
created and added to the chart based on previous states. In prediction and
scanning, there is only one predecessor state, while in completion step the new
state is created based on two predecessor states. Therefore, for each state, we
can keep track of its predecessor(s).

Calculation of Viterbi probabilities is performed as follows. First, the initial
state is assigned the Viterbi probability of 1. Subsequently, when a new state is
being added to the chart, its probability is calculated depending on the parser
operation:

Prediction

For a predecessor state s with Viterbi probability of p:

(i, j)A→ λ.Bµ [p]
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0 1 2
0 ε

H→ .S (0,0,2,3)
S

V→ .X1X2 (0,0,2,3)
X1

H→ .AA (0,0,2,3)
A

V→ .BC (0,0,2,3)
B

H→ .b (0,0,2,3)

B
H→ b. (0,0,1,1)

X1
H→ A.A (0,0,2,3)

A
V→ .BC (1,0,2,3)

B
H→ .b (1,0,2,3)

B
H→ b. (1,0,2,1)

X1
H→ AA. (0,0,2,3)

1 A
V→ B.C (0,0,1,3)
C

H→ .c (0,1,1,3)
C

H→ .d (0,1,1,3)

C
H→ c. (0,1,1,2)

A
V→ B.C (1,0,2,3)
C

H→ .c (1,1,2,3)
C

H→ .d (1,1,2,3)

C
H→ d. (1,1,2,2)

2 A
V→ BC. (0,0,1,3) A

V→ BC. (1,0,2,3)
3 S

V→ X1.X2 (0,0,2,3)
X2

H→ .EE (0,3,2,3)
E

H→ .e (0,3,2,3)
(a)

0 1 2
0 ε

H→ .S (0,0,2,3)
S

V→ .X1X2 (0,0,2,3)
X1

H→ .AA (0,0,2,3)
A

V→ .BC (0,0,2,3)
B

H→ .b (0,0,2,3)

B
H→ b. (0,0,1,1)

X1
H→ A.A (0,0,2,2)

A
V→ .BC (1,0,2,2)

B
H→ .b (1,0,2,2)

B
H→ b. (1,0,2,1)

X1
H→ AA. (0,0,2,2)

1 A
V→ B.C (0,0,1,3)
C

H→ .c (0,1,1,3)
C

H→ .d (0,1,1,3)

C
H→ c. (0,1,1,2)

A
V→ B.C (1,0,2,2)
C

H→ .c (1,1,2,2)
C

H→ .d (1,1,2,2)

C
H→ d. (1,1,2,2)

2 A
V→ BC. (0,0,1,2)

S
V→ X1.X2 (0,0,2,3)

X2
H→ .EE (0,2,2,3)

E
H→ .e (0,2,2,3)

A
V→ BC. (1,0,2,2)

E
H→ e. (0,2,1,3)

X2
H→ E.E (0,2,2,3)

E
H→ .e (1,2,2,3)

E
H→ e. (1,2,2,3)

X2
H→ EE. (0,2,2,3)

3 S
V→ X1X2. (0,0,2,3)
ε

H→ S. (0,0,2,3)
(b)

Figure A.3: Parsing the example from Fig. A.2: a) Parsing chart of [186] with
fixed scanning step. No final states exist in the chart. b) Our approach. The
input is correctly parsed.
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the Viterbi probability of every successor state s′ depends solely on the
probability of the production in state s:

(i, j)B → .ν [P (A→ λBµ)]

Scanning

Since the terminal symbol was already selected during prediction, Viterbi
probability simply propagates to the new state. The predecessor state s:

(i, j)A→ .a [p]

results in the successor state s′:

(i+ 1, j)A→ a. [p]

Completion

Every state s′′ produced by completion will have two predecessors s and s′:

(i, j)B → ν. [p]

(x, y)A→ λ.Bµ [p′]

Its Viterbi probability is then calculated by multiplying the probabilities of
predecessors:

(i, j)A→ λB.µ [pp′]

However, the same state (and with the same scanning history) might be
generated multiple times, because there can be several plausible input parses.
Therefore, if a state already exists in a chart, its Viterbi probability and
predecessor list must be updated. Since we are interested only in the parsing
path of maximum probability, we replace the existing state with the new state
only if the new Viterbi probability exceeds the current highest value.
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A.4.1 Parser Output

After the parsing has finished, we search the Earley chart for final states. If none
are found, the input cannot be parsed with the current grammar. Otherwise,
we select the final state with the highest Viterbi probability, and return that
value as the probability of the input grid.

Often, one also needs to know the exact productions of the grammar used to
parse the input, and their count. These expected usage counts can be used, for
example, to find the maximum likelihood production probabilities based on a set
of training instances [114, 170], using an expectation-maximization algorithm.
The productions used in the Viterbi parse of the input can be extracted from
the Earley chart, by tracing back the path from the final state to the initial
state. The outline of the procedure is shown in Algorithm 3.

Algorithm 3 Calculating expected production counts by backtracking in Earley
chart

function Backtrack(state, pCounts, grammar)
if state.d = 0 then . State generated by prediction.

pCounts[state.p]← pCounts[state.p] + 1
else

if state.p.rhs(d) ∈ grammar.T then . State generated by scanning.
pCounts← Backtrack(state.predecessor, pCounts, grammar)

else . State generated by completion.
pCounts← Backtrack(state.predecessor, pCounts, grammar)
pCounts← Backtrack(state.predecessor2, pCounts, grammar)

end if
end if
return pCounts

end function

The recursive function Backtrack is called with the final state and production
counts initialized to zero. The algorithm is essentially a depth-first search,
since states generated by completion provide two separate paths to follow. The
recursion stops whenever a state generated by prediction is encountered. At this
point, the usage count of the corresponding production is incremented. When
the algorithm finishes, the variable pCounts will contain the desired results.
For instance, the output for example in Figure A.2 is [1 1 1 2 2 1 1 2].
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A.5 Conclusion

We have presented a detailed description of an Earley parsing algorithm for
two-dimensional stochastic context free grammars. To the best of our knowledge,
this is the first algorithm that combines the insights from both deterministic
multidimensional grammars parsing and one-dimensional stochastic grammar
parsing in a top-down approach. Additionally, we have demonstrated our
approach on two toy examples of two-dimensional grid parsing. Finally, this
algorithm was successfully used in the field of inverse procedural modeling, for
the task of parsing building facades, see 7.
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